Project

Back to overview

Flame-made multifunctional nanoparticles for biomedics

Applicant Pratsinis Sotiris E.
Number 146176
Funding scheme Project funding (Div. I-III)
Research institution Institut für Verfahrenstechnik ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Mechanical Engineering
Start/End 01.04.2013 - 31.12.2015
Approved amount 171'618.00
Show all

All Disciplines (2)

Discipline
Mechanical Engineering
Other disciplines of Engineering Sciences

Keywords (3)

Flammen Aerosol Technik; Biomedizinische Materialien; Nanopartikel

Lay Summary (German)

Lead
Nanostructured materials show great potential in the biomedical field as they can serve as superior bioimaging contrast agents, diagnostic and therapeutic tools. Plasmonic, light emitting and superparamagnetic nanoparticles are among the most investigated functional materials in this field. However, before such multifunctional nanomaterials are broadly employed in biomedical applications, a detailed understanding on their bio-interactions is necessary.
Lay summary

Das Ziel dieses Projektes ist es, basierend auf skalierbaren Aerosol-Prozessen Technologien für die Synthese maßgeschneiderter, multifunktionaler Nanomaterialien für biologische Anwendungen zu entwickeln. Ein detailliertes Verständnis der Synthese von derart funktionalisierten Nanopartikeln mittels Flammensprüh-Verfahren soll anhand von systematischen experimentellen Studien und innovativem Reaktor-Design gewonnen werden. Reaktorkonfigurationen mit Einfach- oder Mehrfachdüsen sollen für die Bildung komplexer Mehrkomponenten-Nanopartikel untersucht werden, welche die Kernbausteine der funktionalen Nanomaterialien darstellen. Diese Nanopartikel werden in nachfolgenden Aerosolprozessen in-situ mit anorganischen Schichten versehen und an der Oberfläche funktionalisiert.

Die Produkteigenschaften sollen charakterisiert und als Funktion der Synthesebedingungen (z.B. Precursor-Zusammensetzung, Flammentemperatur, Verweilzeit, oder Düsenanordnung) dargestellt werden. Desweiteren soll eine Korrelation mit der Wirkung der Partikel in den jeweiligen Anwendungen hergestellt werden. Die biologischen Wechselwirkungen der multifunktionellen Partikel werden mittels verschiedener Zell-Linien evaluiert. Hierdurch werden Informationen gewonnen, die auch für die Entwicklung des Syntheseprozesses sogenannter „sicherer“ Nanopartikel (z.B. SiO2-gekapseltes Nanosilber mit plasmonischen Eigenschaften) von Bedeutung sind, welche routinemässig in biologischen Anwendungen in Zusammenarbeit mit der Harvard University eingesetzt werden. Ein Hauptziel des Projektes ist somit die Entwicklung eines flexiblen skalierbaren Herstellungsprozesses sowie von Technologien für die Synthese multifunktionaler Nanopartikel mit gut kontrollierten Eigenschaften für biomedizinische Anwendungen.

Direct link to Lay Summary Last update: 09.04.2013

Responsible applicant and co-applicants

Employees

Publications

Publication
Quantitative analysis of the deposited nanoparticle dose on cell cultures by optical absorption spectroscopy
Spyrogianni Anastasia, Herrmann Inge K, Lucas Miriam S, Leroux Jean-Christophe, Sotiriou Georgios A (2016), Quantitative analysis of the deposited nanoparticle dose on cell cultures by optical absorption spectroscopy, in Nanomedicine, 11(19), 2483-2496.
Shape-Switching Microrobots for Medical Applications: The Influence of Shape in Drug Delivery and Locomotion
Fusco Stefano, Huang Hen-Wei, Peyer Kathrin E., Peters Christian, Haeberli Moritz, Ulbers Andre, Spyrogianni Anastasia, Pellicer Eva, Sort Jordi, Pratsinis Sotiris E., Nelson Bradley J., Sakar Mahmut Selman, Pane Salvador (2015), Shape-Switching Microrobots for Medical Applications: The Influence of Shape in Drug Delivery and Locomotion, in ACS APPLIED MATERIALS & INTERFACES, 7(12), 6803-6811.
Plasmonic biocompatible silver-gold alloyed nanoparticles
Sotiriou Georgios A., Etterlin Gion Diego, Spyrogianni Anastasia, Krumeich Frank, Leroux Jean-Christophe, Pratsinis Sotiris E. (2014), Plasmonic biocompatible silver-gold alloyed nanoparticles, in CHEMICAL COMMUNICATIONS, 50(88), 13559-13562.

Collaboration

Group / person Country
Types of collaboration
Herrmann, Inge K, Dr., Particles–Biology Interactions, Department of Materials Meet Life, EMPA Switzerland (Europe)
- Publication
- Research Infrastructure
Leroux, Jean-Christophe, Prof. Dr., Drug Formulation & Delivery, IPW, D-CHAB, ETHZ Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Bradley, Nelson, Prof. Dr., Multi-Scale Robotics, IRIS, D-MAVT, ETHZ, Switzerland Switzerland (Europe)
- Publication
- Research Infrastructure

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
International Congress on Particle Technology (PARTEC) Poster Effect of settling on the in vitro cytotoxicity evaluation of pyrogenic SiO2 nanoparticles 19.04.2016 Nuremberg, Germany Pratsinis Sotiris E.; Sotiriou Georgios A.; Spyrogianni Anastasia;
Materials Research Society Fall Meeting & Exhibit Talk given at a conference Controlling the antibacterial activity and cytotoxicity of nanosilver. 29.11.2015 Boston, United States of America Spyrogianni Anastasia; Pratsinis Sotiris E.; Sotiriou Georgios A.;
European Aerosol Conference Poster Plasmonic Ag-Au nanoalloys with reduced cytotoxicity for biomedical applications. 06.09.2015 Milan, Italy Pratsinis Sotiris E.; Spyrogianni Anastasia; Sotiriou Georgios A.;
European Aerosol Conference Poster In vitro cytotoxicity of nanoparticles, accounting for agglomeration and settling 06.09.2015 Milan, Italy Spyrogianni Anastasia; Pratsinis Sotiris E.; Sotiriou Georgios A.;
European Aerosol Conference Talk given at a conference Effect of settling on the in vitro cytotoxicity evaluation of nanoparticles. 06.09.2015 Milan, Italy Sotiriou Georgios A.; Spyrogianni Anastasia; Pratsinis Sotiris E.;
Materials Research Society Fall Meeting & Exhibit Talk given at a conference Plasmonic Ag-Au nanoalloys with reduced cytotoxicity. 30.11.2014 Boston, United States of America Pratsinis Sotiris E.; Sotiriou Georgios A.; Spyrogianni Anastasia;
International Aerosol Conference Talk given at a conference The cytotoxicity of fumed silica increases with increasing particle size. 28.08.2014 Busan, Korean Republic (South Korea) Spyrogianni Anastasia; Sotiriou Georgios A.; Pratsinis Sotiris E.;
International Aerosol Conference Poster Effect of temperature history on cytotoxicity of flame-made nanosilica. 28.08.2014 Busan, Korean Republic (South Korea) Pratsinis Sotiris E.; Sotiriou Georgios A.; Spyrogianni Anastasia;
5th International Congress on Nanotechnology, Medicine & Biology (BioNanoMed) Poster Increasing cytotoxicity of pyrogenic nanosilica with increasing particle size. 26.03.2014 Krems, Austria Spyrogianni Anastasia; Sotiriou Georgios A.; Pratsinis Sotiris E.;
Materials Research Society Fall Meeting & Exhibit Poster Interactions of nanostructured silica with murine macrophages. 01.12.2013 Boston, United States of America Pratsinis Sotiris E.; Spyrogianni Anastasia; Sotiriou Georgios A.;


Awards

Title Year
Best Poster Award in the Aerosol-based Nanotechnology session of the European Aerosol Conference 2015 (Milan, Italy) 2015
Student Travel Award in the International Aerosol Conference 2014 (Busan, S. Korea), based on the submitted abstracts and curriculum vitae. 2014

Associated projects

Number Title Start Funding scheme
163243 Multifunctional nanoparticles for targeted theranostics 01.01.2016 Project funding (Div. I-III)
126694 Flame synthesis of nanostructured materials for functional nanocomposites 01.01.2010 Project funding (Div. I-III)

Abstract

Multifunctional nanomaterials with application-tailored characteristics will be made flexibly by scalable flame spray pyrolysis (FSP). The focus is on synthesis of superparamagnetic, plasmonic and phosphorescent nanoparticles with controlled extent of aggregation or agglomeration and proven biomedical applications. More specifically, nanoparticles of different functionalities will be combined into multifunctional probes which can be detected and guided by multiple imaging and control techniques. Such materials have the potential to be used also for synergistic therapeutic action (e.g. theranostics). The surface of these nanoparticles would be modified to further control their bio-interactions. With FSP, liquid precursors are spray combusted resulting in multicomponent nanoparticles by single or multi-nozzle FSP configurations. Hermetically-coated, core-shell nanoparticles with an inorganic (e.g. SiO2) shell (e.g. 2-4 nm thin) can be synthesized also in situ in a single step using swirling vapor jets, downstream of the formation zone of FSP-made core nanoparticles. Such nanoparticles can exhibit the core properties (magnetic, coloristic, etc.) without any adverse (toxic) effects (e.g. nanosilver). Furthermore, multifunctional superparamagnetic nanoparticles can be embedded in polymers resulting in nanocomposites that have the polymer matrix flexibility. That way, such nanocomposites can be actuated by an external magnetic field having potential applications in biosensing (lab-on-a-chip) and controlled drug release. So, nanoparticles with the desired functionalities will be made by innovative reactor designs and systematic experimentation. All nanomaterials will be characterized by an array of techniques, such as X-ray diffraction, nitrogen adsorption, TEM/STEM imaging, spectroscopy analysis (FTIR, Raman, UV/vis, fluorescence) and other methods that are readily available in our and other ETH laboratories. That way, the particle properties will be investigated as a function of synthesis conditions (i.e. precursor composition, flame temperature, residence time, nozzle configuration etc.) and correlated to the final particle performance for the application of interest. The bio-interactions of such multifunctional nanoparticles will be evaluated with various cell lines in order to guide also the process design for synthesis of the so-called “safe” nanoparticles (e.g. SiO2-coated plasmonic nanosilver) for routine bio-applications in collaboration with Harvard University. A distinct target is the development of a scalable process and, eventually, technology for synthesis of multifunctional nanoparticles for bio-applications with closely-controlled characteristics. This project will assist the education of one doctoral student in nanomaterial process engineering and will allow BSc and MSc students to participate in such research. Results will be presented in international conferences and will be submitted for publication in refereed journals.
-