Back to overview

System for space-resolved surface analysis of nanomaterials

English title System for space-resolved surface analysis of nanomaterials
Applicant Pratsinis Sotiris E.
Number 144961
Funding scheme R'EQUIP
Research institution Institut für Verfahrenstechnik ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Chemical Engineering
Start/End 01.12.2012 - 30.11.2013
Approved amount 292'000.00
Show all

All Disciplines (3)

Chemical Engineering
Mechanical Engineering
Material Sciences

Keywords (15)

Nanomaterials; Nanostructure; Nanoparticle; Nanocomposites; Thin Films; Surface Analysis; Surface Chemistry; Atomic Force Microscopy; Raman Spectroscopy; Bio-Sensors; Plasmonic; Catalytic Surfaces; Gas-Sensors; Lithium Ion Batteries; Gas-Phase Synthesis of Materials

Lay Summary (German)

Viele Eigenschaften von Nanomaterialien lassen sich auf nanoskalige Strukturbereiche und spezielle Oberflächenchemie zurückführen. Während sich Nanostrukturen mit Rasterkraftmikroskopen darstellen lassen, ist die Detektierung von Oberflächen-Spezien meist nur mit Mikrometer-Auflösung möglich. Hier soll ein System zur Oberflächencharakterisierung von Nanomaterialien aufgebaut werden, welches die simultane Analyse von Struktur und Oberflächenchemie mit Auflösung im Nanometerbereich ermöglicht.
Lay summary

Das System zur Oberflächencharakterisierung, welches sich primär aus einem Rasterkraftmikroskop und einem Raman-Spektrometer zusammensetzt, dient der simultanen Bestimmung der Oberflächenstruktur und –chemie von Nanomaterialien. Dabei sollen Abbildungen der Materialoberfläche erzeugt werden, die neben der topografischen auch chemische Informationen mit örtlicher Auflösung im Nanometerbereich enthalten. Lokale Änderungen der Oberflächenchemie aufgrund geänderter Umgebungsbedingungen wie Temperatur, Druck oder Gasphasenzusammensetzung, wie sie z.B. bei der Katalyse chemischer Reaktion oder der Adsorption von Gasen vorkommen, werden mit dem System detektiert. Durch Kopplung der Oberflächenanalytik mit der Messung globaler Systemparameter, die für die Leistungsfähigkeit der funktionalen Nanomaterialien charakteristisch sind, sollen Beziehungen zwischen den nanoskaligen Oberflächeneigenschaften sowie der Funktionsweise und Leistungsfähigkeit der Nanomaterialien gewonnen werden. Diese Erkenntnisse werden zum besseren Verständnis der speziellen Eigenschaften von Nanomaterialien beitragen und zur Optimierung bestehender sowie der Entwicklung neuer Nanomaterialien führen. Das System zur Oberflächencharakterisierung soll zunächst zur Analyse von vier Materialsystemen eingesetzt werden, die derzeit in unserer Forschungsgruppe untersucht werden: plasmonische Biosensoren, katalytische Oberflächen, chemo-resistive Gassensoren und Lithiumionen-Batterien.

Direct link to Lay Summary Last update: 21.11.2012

Responsible applicant and co-applicants


Atomically dispersed Pd on nanostructured TiO2 for NO removal by solar light
Fujiwara K., Pratsinis S. E., Atomically dispersed Pd on nanostructured TiO2 for NO removal by solar light, in AIChE Journal.
Pd subnano-clusters on TiO2 for solar-light removal of NO
Fujiwara K., Müller U., Pratsinis S. E., Pd subnano-clusters on TiO2 for solar-light removal of NO, in ACS Catalysis, 6(3), 1887-1893.


Group / person Country
Types of collaboration
Prof. Vanessa Wood, ETHZ Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
Prof. R. Zenobi, ETHZ Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Prof. Baiker, ETHZ Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Prof. Paolo Milani, University of Milan Italy (Europe)
- in-depth/constructive exchanges on approaches, methods or results

Associated projects

Number Title Start Funding scheme
126694 Flame synthesis of nanostructured materials for functional nanocomposites 01.01.2010 Project funding (Div. I-III)
130582 Tailored nano-detectors for early stage diagnosis of ilnesses from the human breath 01.05.2010 Project funding (Div. I-III)


The aim of this request is to acquire a Surface Analysis System that will be used as a characterization tool in fundamental research on functional nanomaterials as well as in the development of nanoparticle-based devices such as gas detectors, batteries, and biosensors. The Surface Analysis System allows to combine structural information obtained by atomic force microscopy with chemical properties by in-situ Raman spectroscopy. Thereby, the functionality of nanostructured films, nanoparticle-assembled devices or nanocomposites can be related to the local texture and surface chemistry. This will greatly enhance the fundamental understanding of the unique chemical, electrical, optical, or magnetic properties of nanostructured materials to enable the assembly of the corresponding micro-devices. The heart of the proposed Surface Analysis System is an atomic force microscope (AFM) that will be coupled with the Raman spectrometer (Renishaw Raman Microscope) already available in our laboratory. The coupling platform with AFM guarantees complete mechanical and software integration for acquiring high spatial resolution scanning probe data along with Raman data on the nanoscale. By this unique coupled, in-situ approach, chemical information can be correlated with topographic, electrical, thermal and near-field optical maps with the same resolution and at the same location on the specimen. The platform also allows AFM to be used as a stand-alone system for conventional nanostructure analysis while the Raman spectrometer can further be utilized for routine chemical structure analysis as has been done already in synthesis of superior heterogeneous catalysts. Local information on nanomaterial texture and chemistry as well as their control by selecting the ambient conditions (gas atmosphere and temperature) by the Surface Analysis System will be directly related to the global performance of the nanostructured materials. Therefore, the surrounding gas atmosphere will be simultaneously analyzed with an on-line Fourier-transformed infrared spectrometer that forms a further part of the proposed surface analysis platform. This will allow to relate the performance of e.g. catalytic surfaces and gas sensors (e.g. for monitoring chronic illnesses like diabetes) to the local material topography and chemistry. Finally, a battery cycle tester will be included in the system that can relate the global electrochemical properties of Li-ion batteries developed in our laboratory together with collaborators at PSI and ETH with structural and chemical properties of the nanostructured electrode materials. Our group focuses on gas-phase synthesis and modification of nanoparticles and nanostructured surfaces for the development of new products and functional devices. We have significantly advanced the synthesis of nanoparticles ranging from simple oxides to multicomponent and nano-thin coated structures by combining basic and applied research in the past decade. The frontier now is the fundamental understanding and quantitative description of the functionalized and layered nanomaterials assembled from these nanoparticles to tailor and further improve their properties for design of devices exploiting nanostructural effects. The proposed Surface Analysis System can support us significantly to reach this goal. Four systems that are currently investigated by our group and its collaborators will immediately benefit from the information gained by the Surface Analysis system: (A) Plasmonic biosensors, (B) Catalytic surfaces, (C) Chemoresistive gas sensors, and (D) Lithium ion batteries that are supported by the Swiss National Science Foundation, European Research Council, Research Commisssion of ETH Zurich and Commission for Technology and Innovation.