Projekt

Zurück zur Übersicht

Development of a compact tunable light source using a laser produced plasma

Gesuchsteller/in Abhari Reza
Nummer 144950
Förderungsinstrument R'EQUIP
Forschungseinrichtung Institut für Energietechnik ETH Zürich
Hochschule ETH Zürich - ETHZ
Hauptdisziplin Plasmaphysik
Beginn/Ende 01.11.2012 - 30.04.2015
Bewilligter Betrag 100'000.00
Alle Daten anzeigen

Keywords (4)

EUV; Lithography; Laser; Plasma

Lay Summary (Italienisch)

Lead
Sviluppo di una sorgente di luce regolabile e compatta che utilizza un plasma prodotto da laser
Lay summary

Al laboratorio LEC-Laboratory for Energy Conversion, ETH di Zurigo, dal 2007 ad oggi è stata sviluppata una sorgente di radiazione ultravioletta estrema (EUV) che utilizza plasmi laser generati da gocce di stagno. Nell’industria dei semiconduttori la litografia nell’estremo ultravioletto (EUVL) è promettente per soddisfare i principi di base della tecnologia litografica.

Lo stagno è capace di produrre radiazione alle lunghezze d'onda desiderate nella regione spettrale dell’EUV. L’utilizzo di un plasma prodotto da laser (LPP) costituisce un metodo efficace per la generazione degli stati di carica desiderati negli atomi di stagno. Tuttavia gli LPP, oltre ad emettere luce nell’EUV (chiamata radiazione di banda), emettono luce anche in altre regioni dello spettro elettromagnetico. È quindi fondamentale quantificare tale radiazione in maniera tale da filtrarla, in quanto essa ha un effetto negativo sul flusso totale di radiazione EUV e sulla produttività in larga scala dei dispositivi. Sebbene per le applicazioni correlate alla litografia EUV l’emissione di radiazione nella regione dell’UV/VUV deve essere ridotta al minimo, esistono altre applicazioni dove questa radiazione può essere utilizzata. Queste includono la ricerca nei settori come: la fisica delle superfici, la chimica, la scienza dei materiali, la biomedica e le nanotecnologie.

Il richiesto spettrometro modello 234/302 verrà utilizzato per misurare la radiazione emessa dalla sorgente EUV nella regione spettrale da 30 nm a 550 nm. Anche altri combustibili, come l’indio e il gallio, sono stati utilizzati al LEC. Il richiesto sistema laser permetterà di generare un plasma avente temperatura elettronica più alta e di ampliare l’emissione di radiazione in un intervallo di lunghezze d’onda più ampio.

Direktlink auf Lay Summary Letzte Aktualisierung: 08.11.2012

Verantw. Gesuchsteller/in und weitere Gesuchstellende

Publikationen

Publikation
LPP Light Source for Actinic HVM Inspection Applications
(2015), LPP Light Source for Actinic HVM Inspection Applications, in SPIE Proceedings, 9422, 94222K-1-94222K-11.
Spectral emission properties of a LPP light source in the sub-200nm range for wafer inspection applications
(2015), Spectral emission properties of a LPP light source in the sub-200nm range for wafer inspection applications, in SPIE Proceedings, 9424, 942418-1-942418-8.
Spectral emission properties of a LPP light source in the sub-200nm range for wafer inspection applications
, Spectral emission properties of a LPP light source in the sub-200nm range for wafer inspection applications, in Journal of Micro/Nanolithography, MEMS, and MOEMS.

Wissenschaftliche Veranstaltungen

Aktiver Beitrag

Titel Art des Beitrags Titel des Artikels oder Beitrages Datum Ort Beteiligte Personen
SPIE Conference: Metrology, Inspection, and Process Control for Microlithography XXIX Vortrag im Rahmen einer Tagung Spectral emission of a LPP source for inspection applications in the sub-200nm range 22.02.2015 San Jose, California, Vereinigte Staaten von Amerika Abhari Reza;
SPIE Conference: Extreme Ultraviolet (EUV) Lithography VI Poster LPP Light Source for Actinic HVM Inspection Applications 22.02.2015 San Jose, California, Vereinigte Staaten von Amerika Abhari Reza;
International Workshop on EUV and Soft X-ray Sources Poster VUV Spectroscopy on droplet-based Laser Produced Plasmas 03.11.2014 University College Dublin, Dublin, Irland Abhari Reza;
International Workshop on EUV and Soft X-ray Sources Vortrag im Rahmen einer Tagung Droplet-based EUV LPP Source for High Volume Metrology 03.11.2014 University College Dublin, Dublin, Irland Abhari Reza;


Auszeichnungen

Titel Jahr
Best Poster Award at the 2014 International Workshop on EUV and Soft X-ray Sources, Dublin Ireland, November 3-6, 2014. Title: "VUV Spectroscopy on droplet-based Laser Produced Plasmas", Authors: Nadia Gambino, Bob Rollinger, Reza Abhari 2014

Abstract

At the Laboratory for Energy Conversion (LEC), ETH Zurich we have been developing a tin droplet laser plasma EUV source since 2007. Laser produced plasmas are a well established method of generating radiation at a range of wavelengths. The interaction of a high power laser with a specific target materials have been used to generate pho-ton emission in a wide range of spectral regions including Hard X-Rays, Soft X-Rays, Ultraviolet radiation includ-ing Vacuum Ultraviolet and Extreme Ultraviolet and Visible Radiation. Although synchrotrons can provide coherent radiation at specific wavelengths, the footprint of such a source is extremely large and the photon flux is often too low for certain applications, such as Extreme Ultraviolet (EUV) lithography. EUV lithography (EUVL) shows the most promise to fulfil the criteria for the next generation of lithography tech-nology used in the semiconductor industry. It requires a bright source of radiation in the 2% band centred at 13.5 nm. For semiconductor device miniaturisation to continue beyond 2013 the full development of EUVL for high volume manufacturing is required. Tin, in solid or liquid form, is capable of producing radiation at the required EUV wavelengths. This is due to the fact that Sn has atomic structure transitions, which emit brightly in this band-width. An efficient method of generating the desired ion stages in tin atoms, in sufficient concentration, is in the formation of a laser-produced plasma (LPP). However, LPPs are highly emissive in other regions of the spectrum apart from in-band radiation, where the multilayer optics in an EUVL system can be highly re?ective. This Out-of-band radiation in the UV range will cause ?are, while infrared OOB radiation will heat the wafer and create overlay issues in an EUVL system. The current spectral purity requirements for an EUVL source include less than 1% in the 130 to 400 nm range (DUV/UV) and less than 10 - 100% for wavelengths greater than or equal to 400 nm (IR/Vis). It is necessary to quantify the amount of OOB at the IF of an EUV Source to determine the amount of spectral filter-ing required, as this has an effect on the throughput of EUV radiation to the stepper.Although, for EUV lithography applications, spectral emissions from laser-produced plasmas in the UV and VUV range should be minimised, there are numerous applications for coherent radiation in these spectral ranges. These applications include research in the fields related to surface physics and chemistry, materials science, biomedical applications and nanotechnology. Examples of studies using UV and VUV radiation also include the antimicrobial effects of UV and VUV Radiation, the industrial processing of polymers, chemical dynamics studies and photo-absorption studies of graphene. Firstly, the Model 234/302 Spectrometer, applied for in this proposal, will be used to measure the radiation emitted in the 30 to 550 nm region from a liquid tin droplet EUV source. Using line identifica-tion and line ratio techniques information such as the electron temperature, the ion stages present in the plasma and their relative density can be determined. These measurements will complement measurements in the visible spec-trum using the HR2000+ spectrometer at the ALPS facility. The combination of these diagnostics would give an overview of the emission from the plasma from 30 to 1100 nm. To our knowledge, these measurements have not previously been preformed on a micrometer scale Sn droplet LPP EUV source. Other fuels apart from tin, including indium and gallium, have also been investigated at the LEC. The laser system, applied for in this proposal, has a pulse energy of 2.5 J and a pulse duration of 10 ns. A laser capable of delivering this power density, which is orders of magnitude higher than our existing system, would allow us to generate plasmas with a much higher electron tem-perature. This would greatly expand the range of wavelengths that our laser plasma source can generate.
-