Project

Back to overview

Combined deep optoacoustics and ultrasound for quantitative multimodal imaging of the human body

Applicant Frenz Martin
Number 144443
Funding scheme Project funding (Div. I-III)
Research institution Institut für angewandte Physik Universität Bern
Institution of higher education University of Berne - BE
Main discipline Other disciplines of Physics
Start/End 01.01.2013 - 31.03.2017
Approved amount 377'653.00
Show all

All Disciplines (2)

Discipline
Other disciplines of Physics
Biomedical Engineering

Keywords (6)

multimodality; elastography; quantitative medical imaging; clutter reduction; sound speed; aberration correction

Lay Summary (German)

Lead
Für die medizinische bildgebende Diagnostik soll ein neuartiges Diagnosesystem entwickelt werden, das Ultraschall, Doppler-Ultraschall, Elastographie, Schallgeschwindigkeitsmessungen und Optoakustik in einem Gerät vereinigt. Auf diese Weise können sowohl Gewebestrukturen mit hoher Auflösung, wie auch Gewebefunktionen z.B. Sauerstoffkonzentrationen im Blut in Echtzeit dargestellt werden. Ziel ist es, ein System zu entwickeln, das eine Früherkennung von unterschiedlichen Krankheiten erlaubt.
Lay summary

Wir leben in einer alternden Gesellschaft, was zu zunehmenden altersbedingten Krankheiten führt. Dies erfordert immer bessere Diagnosemethoden, vor allem in der Früherkennung, denn das ist der Schlüssel für eine personalisierte, auf den einzelnen Patienten speziell abgestimmte Therapie. Die Zukunft der modernen Diagnose ist multimodale Bildgebung, die sowohl Strukturen mit hoher Auflösung, wie auch Funktionen der betrachteten Organe oder Gewebestrukturen darstellt. Unter allen in der Medizin eingesetzten bildgebenden Verfahren spielt der Ultraschall eine wichtige Rolle, da dieses Verfahren billig, schnell, zuverlässig und sicher ist. Darüber hinaus erlaubt es eine Bildaufnahme in real-time und kann praktisch an jeder beliebigen Stelle des Körpers eingesetzt werden. Der grosse Nachteil des Ultraschalls ist sein geringer Kontrast was oftmals eine zusätzliche Untersuchung im CT oder MRI erfordert. Dieser Nachteil kann durch die Kombination von Ultraschall mit Optoakustik aufgehoben werden. Bei der optoakustischen Bildgebung wird das Gewebe mit einem kurzen Laserpuls bestrahlt, der in den zu untersuchenden Strukturen eine Ultraschallwelle erzeugt, die an der Körperoberfläche detektiert wird. Durch geeignete Wahl der Laserwellenlänge können so z.B. Venen von Arterien anhand ihres Sauerstoffgehalts im Blut unterschieden werden. Der Kontrast der optoakustischen Bildgebung basiert also auf der optischen Absorption. Um dieses kombinierte Diagnoseverfahren für den klinischen Einsatz zu optimieren, d.h. eine möglichst tiefe Eindringtiefe zu erhalten, haben wir eine neuartiges Verfahren entwickelt, das mit Hilfe einer fokusierten Ultraschallwelle das Gewebe lokal in Schwingung versetzt. Auf diese Weise können wir optoakustische Signale eindeutig vom Hintergrund trennen. Diese Ultraschallanregung erlaubt uns gleichzeitig elastische Gewebeeigenschaften zu detektieren, was ein weiteres Diagnoseverfahren zur Darstellung von Tumoren darstellt. Unser Ziel ist es, ein neuartiges bildgebendes Diagnosesystem zu entwickeln, das Ultraschall, Doppler-Ultraschall, Elastographie und optoakustische Bildgebung in einem Gerät vereinigt.

Direct link to Lay Summary Last update: 15.02.2013

Responsible applicant and co-applicants

Employees

Publications

Publication
Rapid scanning wide-field clutter elimination in epi-optoacoustic imaging using comb LOVIT
Petrosyan Tigran, Theodorou Maria, Bamber Jeff, Frenz Martin, Jaeger Michael (2018), Rapid scanning wide-field clutter elimination in epi-optoacoustic imaging using comb LOVIT, in Photoacoustics, 10, 20-30.
Photoacoustic reflection artifact reduction using photoacoustic-guided focused ultrasound: comparison between plane-wave and element-by-element synthetic backpropagation approach
Singh Mithun Kuniyil Ajith, Jaeger Michael, Frenz Martin, Steenbergen Wiendelt (2017), Photoacoustic reflection artifact reduction using photoacoustic-guided focused ultrasound: comparison between plane-wave and element-by-element synthetic backpropagation approach, in Biomedical Optics Express, 8(4), 2245-2245.
Study of clutter origin in in-vivo epi-optoacoustic imaging of human forearms
Preisser Stefan, Held Gerrit, Akarçay Hidayet G, Jaeger Michael, Frenz Martin (2016), Study of clutter origin in in-vivo epi-optoacoustic imaging of human forearms, in Journal of Optics, 18(9), 094003-094003.
Multiple irradiation sensing of the optical effective attenuation coefficient for spectral correction in handheld OA imaging
Held K. Gerrit, Jaeger Michael, Rička Jaro, Frenz Martin, Akarçay H. Günhan (2016), Multiple irradiation sensing of the optical effective attenuation coefficient for spectral correction in handheld OA imaging, in Photoacoustics, 4(2), 70-80.
Spectral correction of OA signals based on multiple irradiation sensing: experimental validation
Held K. Gerrit, Jaeger Michael, Frenz Martin, Akarçay H. Günhan (2016), Spectral correction of OA signals based on multiple irradiation sensing: experimental validation, in SPIE BiOS, San Francisco, California, United StatesSPIE , Bellingham.
Computed Ultrasound Tomography in Echo Mode for Imaging Speed of Sound Using Pulse-Echo Sonography: Proof of Principle
Jaeger Michael, Held Gerrit, Peeters Sara, Preisser Stefan, Grünig Michael, Frenz Martin (2015), Computed Ultrasound Tomography in Echo Mode for Imaging Speed of Sound Using Pulse-Echo Sonography: Proof of Principle, in Ultrasound in Medicine and Biology, 41(1), 235-250.
Full correction for spatially distributed speed-of-sound in echo ultrasound based on measuring aberration delays via transmit beam steering
Jaeger Michael, Robinson Elise, Akarcay H. Guenhan, Frenz Martin (2015), Full correction for spatially distributed speed-of-sound in echo ultrasound based on measuring aberration delays via transmit beam steering, in PHYSICS IN MEDICINE AND BIOLOGY, 60(11), 4497-4515.
Towards clinical computed ultrasound tomography in echo-mode: Dynamic range artefact reduction
Jaeger Michael, Frenz Martin (2015), Towards clinical computed ultrasound tomography in echo-mode: Dynamic range artefact reduction, in Ultrasonics, 62, 299-304.
Computed Ultrasound Tomography in Echo mode (CUTE) of speed of sound for diagnosis and for aberration correction in pulse-echo sonography
Jaeger Michael, Held Gerrit, Preisser Stefan, Peeters Sara, Grünig Michael, Frenz Martin (2014), Computed Ultrasound Tomography in Echo mode (CUTE) of speed of sound for diagnosis and for aberration correction in pulse-echo sonography, in Ultrasonic imaging and tomography, SPIE, Bellingham.
Increase of penetration depth in real-time clinical epi-optoacoustic imaging: Clutter reduction and aberration correction
Jaeger Michael, Gashi Kujtim, Peeters Sara, Held Gerrit, Preisser Stefan, Gruenig Michael, Frenz Martin (2014), Increase of penetration depth in real-time clinical epi-optoacoustic imaging: Clutter reduction and aberration correction, in Photons plus ultrasound: Imaging and sensing, SPIE, Bellingham.
Influence of illumination position on image contrast in epi-optoacoustic imaging of human volunteers
Preisser Stefan, Held Gerrit, Peeters Sara, Jaeger Michael, Frenz Martin (2014), Influence of illumination position on image contrast in epi-optoacoustic imaging of human volunteers, in Photons plus Ultrasound: Imaging and sensing, SPIE, Bellingham.
Real-time clinical clutter reduction in combined epi-optoacoustic and ultrasound imaging
Jaeger Michael, Gashi Kujtim, Akarçay Hidayet Günhan, Held Gerrit, Peeters Sara, Petrosyan Tigran, Preisser Stefan, Gruenig Michael, Frenz Martin (2014), Real-time clinical clutter reduction in combined epi-optoacoustic and ultrasound imaging, in Photonics and Lasers in Medicine, 3(4), 343-349.
Real-time clutter reduction in epi-optoacoustic imaging of human volunteers
Jaeger Michael, Gashi Kujtim, Peeters Sara, Held Gerrit, Preisser Stefan, Frenz Martin (2014), Real-time clutter reduction in epi-optoacoustic imaging of human volunteers, in Ultrasonic imaging and tomography, SPIE, Bellingham.
Effect of irradiation distance on image contrast in epi-optoacoustic imaging of human volunteers
Held Gerrit, Preisser Stefan, Günhan Akarçay H., Peeters Sara, Frenz Martin, Jaeger Michael (2013), Effect of irradiation distance on image contrast in epi-optoacoustic imaging of human volunteers, in Biomedical Optics Express, 5(11), 3765-3780.

Collaboration

Group / person Country
Types of collaboration
Biomedical Photonic Imaging Group University of Twente Netherlands (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Exchange of personnel
Institute of Applied Physics, Florence, Prof. Roberto Pini and Dr. Fulvio Ratto Italy (Europe)
- Exchange of personnel
Institute of Cancer Research and Royal NHS Foundation Trust, Dr. Jeff Bamber Great Britain and Northern Ireland (Europe)
- Exchange of personnel

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
CIUS Spring Seminar 2017 Talk given at a conference Pulse-echosonographic imaging of speed-of-sound in handheld diagnostic ultrasound 25.04.2017 Trondheim, Norway Jaeger Michael; Frenz Martin;
Biomedical Photonics Network Annual Meeting 2016 Talk given at a conference Creating 3D Images of the Brain Vasculature using Optoacoustic Microscopy 28.11.2016 Zurich, Switzerland Spadin Florentin; Jaeger Michael; Frenz Martin;
29th Annual Conference of the IEEE Photonics Society Talk given at a conference Multimodal quantitative ultrasound and optoacoustic imaging 02.10.2016 Waikoloa, United States of America Jaeger Michael; Frenz Martin;
Current and future trends in computed tomography Talk given at a conference Imaging speed of sound using pulse echo sonography 15.09.2016 Innsbruck, Austria Jaeger Michael; Frenz Martin;
INDIGO Lab Linking Conference Talk given at a conference Optoacoustic Imaging: examples from Tomography & Microscopy 02.09.2016 Bangalore, India Jaeger Michael; Spadin Florentin; Frenz Martin;
CLEO: 2016 Laser Science to Photonic Applications Talk given at a conference Multimodal biomedical optoacoustic imaging 09.07.2016 San Jose, United States of America Jaeger Michael; Frenz Martin;
AIUM 2016 Annual Convention Talk given at a conference Imaging speed of sound using pulse-echo sonography 19.03.2016 New York, United States of America Jaeger Michael; Frenz Martin;
Seminar Individual talk Optoacoustic and speed of sound imaging 27.01.2016 Graz, Austria Jaeger Michael; Frenz Martin;
Annual Meeting Biophotonics Network BMPN Talk given at a conference In vivo imaging of malaria-infected mice using optoacoustic microscopy 11.12.2015 Biel, Switzerland Spadin Florentin; Frenz Martin; Jaeger Michael;
European Conference on Biomedical Optics, SPIE/OSA Talk given at a conference Fluence compensation for quantitative optoacoustic imaging using near-infrared imaging and Monte Carlo simulations 23.06.2015 Munich, Germany Petrosyan Tigran; Jaeger Michael; Frenz Martin;
PostDoc Day 2015 Poster Determining the optical effective attenuation coefficient of tissues from optoacoustic measurements 21.05.2015 Zürich, Switzerland Jaeger Michael; Frenz Martin;
3rd International Conference on BioPhotonics Talk given at a conference Quantitative spectrally resolved optoacoustic imaging 20.05.2015 Florence, Italy Frenz Martin; Jaeger Michael; Petrosyan Tigran;
Photonics West 2015 Talk given at a conference Investigation of deep clinical OA imaging of large blood vessels in the neck, abdomen and limbs 08.02.2015 San Francisco, United States of America Jaeger Michael; Frenz Martin;
International Conference on Advanced Laser Technologies (ALT) Talk given at a conference Fluence compensated optoacoustic image reconstruction for quantitative imaging 06.10.2014 Cassis, France Petrosyan Tigran; Frenz Martin; Jaeger Michael;
IEEE Ultrasonics Symposium Talk given at a conference Clinical feasibility of computed ultrasound tomography in echo mode (CUTE) 06.09.2014 Chicago, United States of America Frenz Martin; Jaeger Michael;
IEEE Ultrasonics Symposium Talk given at a conference Full aberration correction in echo ultrasound after detecting aberrators spatially resolved via transmit beam steering 05.09.2014 Chicago, United States of America Frenz Martin; Jaeger Michael;
PIERS Talk given at a conference Full aberration correction towards high-resolution deep clinical multimodal optoacoustic and ultrasound imaging 25.08.2014 Guangzhou, China Preisser Stefan; Frenz Martin; Jaeger Michael; Peeters Sara;
International Conferences on Laser Applications in Life Sciences (LALS) 2014, Keynote Lecture Talk given at a conference Echo-mode speed of sound measurements for optoacoustic aberration correction 01.07.2014 Ulm, Germany Preisser Stefan; Jaeger Michael; Frenz Martin; Peeters Sara;
OSA BIOMED 2014 Poster Influence of illumination position on image contrast in epi-optoacoustic imaging of human volunteers 26.03.2014 Miami, United States of America Peeters Sara; Preisser Stefan; Frenz Martin; Jaeger Michael;
AIUM 2016 Annual Convention Talk given at a conference Aberration correction for inhomogeneous speed of sound in echosonography 21.03.2014 New York, United States of America Jaeger Michael; Frenz Martin;
SPIE Medical Imaging Talk given at a conference Clutter reduction techniques for improved contrast and imaging depth of clinical optoacoustic imaging 20.02.2014 San Diego, United States of America Jaeger Michael; Frenz Martin; Peeters Sara;
SPIE Medical Imaging Talk given at a conference CUTE: Computed Ultrasound Tomography in Echo mode, for diagnosis and for aberration correction in pulse-echo sonography 19.02.2014 San Diego, United States of America Frenz Martin; Jaeger Michael;
Photonics West - BIOS Talk given at a conference Increase of penetration depth in real-time clinical epi-optoacoustic imaging: Clutter reduction and aberration correction 01.02.2014 San Francisco, United States of America Preisser Stefan; Frenz Martin; Peeters Sara;
Biomedical Photonics Network Talk given at a conference Optoacoustic clutter reduction in freehand combined optoacoustic and ultrasound imaging of human volunteers 01.11.2013 Bern, Switzerland Frenz Martin; Jaeger Michael; Preisser Stefan; Peeters Sara;
IEEE-International Ultrasonic Symposium (IUS) Talk given at a conference Reduction of clutter in medical epiphotoacoustic images using acoustic radiation force-based localised vibration tagging (ARFLOVIT) 21.06.2013 Prague, Czech Republic Jaeger Michael; Frenz Martin;


Self-organised

Title Date Place
Biomedical Photonics Network 01.11.2013 Bern, Switzerland

Patents

Title Date Number Inventor Owner
Computed Ultrasound Tomography in Echo mode (CUTE) for imaging speed of sound using pulse-echo sonography 16.12.2014 WO2015/091519A1
Ultrasonic imaging 24.07.2013 WO2014/016600A1

Associated projects

Number Title Start Funding scheme
154322 High sensitive ultrasound transducer for optoacoustic imaging of brain oxygenation in preterm infants 01.02.2014 International short research visits
170758 High-End 3D Ultrasound Open Research Platform 01.12.2016 R'EQUIP
127274 Deep optoacoustic imaging with nanoparticle enhanced contrast 01.10.2009 Project funding (Div. I-III)
179038 Quantitative multimodal spectral optoacoustic and speed-of-sound imaging for multimodal handheld diagnostic ultrasound 01.06.2018 Project funding (Div. I-III)

Abstract

Modern society’s ageing population and growing health problems require beyond-state-of-the-art facilities for early disease detection and personalized medicine, and it is growingly perceived that multimodal imaging is the key to more accurate diagnosis and patient-tailored therapy. Among the various established medical imaging modalities, ultrasound (US) is comparably low-cost, non-ionizing, and provides the patient short, comfortable sessions. Real-time and free-hand operation makes it easy to quickly access different parts of the body. At the downside conventional US as a single contrast modality provides limited differential diagnosis, often making subsequent use of CT/MRI mandatory. Optoacoustic imaging (OA) is an emerging technique which can complement classical US with additional functional information for multimodal imaging. The tissue is irradiated using pulsed laser light, and conversion of absorbed laser light to ultrasound theoretically allows the detection of optically absorbing structures deep inside the tissue with ultrasound resolution. This is promising for imaging vasculature and oxygenation status of tissue based on the absorption spectra of oxy- and deoxyhaemoglobin. Recent years have seen a rapid development of OA techniques, and we and various research groups have investigated combined OA and US imaging. A remaining challenge, however, to successful combination of OA with US, still is to obtain a clinically useful imaging depth. We were the first to identify strong signal clutter to be the main limiting factor to OA imaging depth, and during our running NF project we developed displacement-compensated averaging (DCA) for OA clutter reduction. DCA was based on clutter decorrelation that naturally occurs when palpating the tissue and thus facilitates clutter reduction via averaging. Our results have demonstrated that OA clutter reduction is feasible using specialized scanning techniques in conjunction with sophisticated data processing. DCA, however, shows several disadvantages at the clinical application level, including a rather low contrast gain of only a factor of 2 to 3, limited applicability to only palpable tissue, and a requirement for special skills in probe guidance. Therefore we want to develop within the proposed project a novel clutter reduction technique which in theory allows complete clutter cancellation without the need for palpation or any special skills. This technique will be based on localized vibration tagging (LOVIT) of the OA signal at its place of origin using a focused ultrasound beam, which allows the unambiguous identification of true OA signal within the clutter background. First phantom results confirmed the great potential of our invention which will be a break-through for deep clinical OA. Within the proposed project we will investigate and optimize this technique towards future in-vivo applications, and we will also use the same method for a concluding investigation of the origin of clutter in real tissue. In addition to that we will investigate the combination with radiation force elastography with which it shares the same technical background. This continues our multimodal imaging approach that we already adopted for the running project, and complements our portfolio with a new elastography technique. In addition to clutter, we identified inhomogeneous speed of sound in tissue as a further important limitation to deep imaging. Inhomogeneous sound speed leads to ultrasound aberrations and thus to degraded resolution and contrast if not properly accounted for, making aberration correction a requirement for deep OA imaging! Aberration correction is currently based on a blind auto-focusing approach, which has limited applicability in OA. Within the framework of the proposed project we want to go an entirely new way, taking advantage of a combined OA and US system. We hypothesize that in such a combined device, accurate OA aberration correction beyond the state-of-the-art is feasible when based on an independent measurement of sound speed using US. We recently invented a method which allows measuring sound speed spatially resolved with high resolution using echo US, and we will investigate this method to provide an accurate input to direct aberration correction in OA. In addition to that we will investigate sound speed as additional imaging modality in its own right, augmenting the diagnostic accuracy of a multimodal device. In summary our basic research will yield novel beyond the state-of-the-art developments towards multimodal imaging using US as a real-time, save, and versatile device for improved quantitative diagnostic accuracy at low cost. This project will strongly benefit from two PhD students which will ensure the smooth accomplishment of the parallel project parts. In addition to that, the purchase of a VerasonicsTM ultrasound research scanner will facilitate the planned fundamental research with high efficiency, because it provides outstanding research access for the direct implementation of the special scan sequences and data processing schemes that will be developed during the proposed project.
-