Project

Back to overview

Quantum sensing using single spin microscopy

Applicant Maletinsky Patrick
Number 143697
Funding scheme Project funding (Div. I-III)
Research institution Departement Physik Universität Basel
Institution of higher education University of Basel - BS
Main discipline Condensed Matter Physics
Start/End 01.07.2013 - 30.09.2016
Approved amount 400'000.00
Show all

Keywords (11)

Diamond; Spin Physics; Graphene; Nanofabrication; Quantum optics; Magnetic imaging; Solid state physics; Magnetism; Scanning probe microscopy; Carbon nanotubes; Quantum sensing

Lay Summary (German)

Lead
Die Nutzung einzelner Quantensysteme als hochempfindliche Sensoren ist ein aufstrebendes Forschungsgebiet.Durchbrüche wurden insbesondere bei der Anwendung einzelner Spins als nano "Quanten-Magnetometer" erzielt.Diese könnten klassischen Methoden bald übertrumpfen und so zu einer weitverbreiteten Technologie mit Anwendungen von Biologie (MRI) zur Physik (Magnetismus) werden.Wir werden das erste Tieftemperatur Quanten-Magnetometer bauen und auf offene Probleme der mesoskopischen Physik anwenden.
Lay summary

Das Hauptziel dieses Projekts ist es, Quantensensoren als ein weit verbreitetes Werkzeug der Nanowissenschaften zu etablieren und erste, nicht-triviale Anwendungsbeispiele dieser neuartigen Technologie im Feld des Nanomagnetismus aufzuzeigen. Zu diesem Zweck werden wir ein neuartiges Quanten-Magnetometer basierend auf einem einzelnen, auf einer Rastersonde positionierten Elektronenspin implementieren. Unsere Apparatur wird unter Tieftemperaturbedingungen operieren und sensitiv genug sein, um Magnetfelder von einzelnen Elektronen mit nanometrischer Auflösung abzubilden.


In den letzten Jahren haben wir ein solches Quanten-Magnetometer bei Raumtemperatur mit einem besonders stabilen und kohärenten Spinsystem implementiert: Dem Stickstoff-Vakanzzentrum (NV-Zentrum) in Diamant. Das NV Zentrum beherbergt ein Elektronenspinsystem mit aussergewöhlichen quantenmechanischen Eigenschaften, wie lange Kohärenzzeiten und optische Spin-Initialisierung und -Auslese. Wir haben damit ein NV-basiertes Quanten-Magnetometer implementiert und insbesondere höchst robuste und effiziente Einzelelektronen-Rastersonden aus Diamant entwickelt. Diese einzigartigen, speziell für diese Anwendung entwickelten Nanostrukturen werden die Basis für unsere Experimente bilden und den Weg zu den geplanten Tieftemperaturanwendungen ebnen. In diesem Projekt werden wir unsere neuartige Technologie nutzen, um magnetische Phänomene in Festkörpern auf der Nanoskala zu studieren, welche mit bisherigen experimentellen Methoden nicht untersucht werden können. Unser Fokus wird dabei auf kohlenstoffbasierten Nanosystemen ("Nanotubes" und "Graphen"), Supraleitern und selbstorganisierten magnetischen Nanostrukturen liegen. Unsere Forschung wird die Quanten-Sensorik als wertvolle Nanotechnologie mit weiterverbreiteter Anwendung etablieren; unsere Experimente werden bisher unbekannte Einblicke in faszinierende Materialsysteme erlauben und damit auf lange Sicht neuartige elektronische Schaltelemente basierend auf nanomagnetischen Strukturen erlauben.

Direct link to Lay Summary Last update: 19.06.2013

Lay Summary (English)

Lead
Quantum-systems have recently emerged as powerful sensory tools.Remarkable progress has been made in using single spins as nanoscale quantum-magnetometers.They could soon outperform their best classical counterparts and become widely used scientific tools with applications from nanoscale MRI to nanoscale studies of magnetism.We will implement the world's first such quantum-magnetometer operating under cryogenic conditions and apply it to outstanding questions in the field of mesoscopic physics.
Lay summary

The central goal of this project is to establish quantum-sensing to a widely used tool in nanoscale physics and to demonstrate first non-trivial application examples by addressing outstanding scientific questions in the field of nanoscale magnetism in the solid state. To that end, we will implement a novel quantum-magnetometer based on a scannable single electron spin. Our apparatus will operate under cryogenic conditions and will be capable of imaging magnetic stray fields from individual electrons with nanometric spatial resolution. 

In the last years, we have demonstrated such quantum nano-magnetic imaging at room temperature using a particularly robust and coherent spin system: The Nitrogen-Vacancy (NV) centre in diamond, which hosts an electronic spin with exceptional quantum-mechanical properties, such as long coherence times and optical spin-readout and initialisation. We have developed a NV-based scanning single-spin magnetometer and in particular implemented robust, all-diamond scanning probes containing singe NV spins. These unique, engineered nanostructures will also form the basis for this project and their robustness and efficiency will pave the way for low-temperature operation. In this project, we will use our novel and unique technology to study nanoscale magnetic phenomena which are unaccessible to present-day sensing technologies. Our focus will lie on nanoscale magnetism in solid-state systems such as carbon nanomaterials, superconductors or self-assembled magnetic nanostructures. This research will establish nanoscale quantum-sensing as a valuable technology with widespread applications; it will provide new insight into fascinating material systems and on the long run enable new electronic devices based on nanomagnetic phenomena.


Direct link to Lay Summary Last update: 19.06.2013

Responsible applicant and co-applicants

Employees

Publications

Publication
Fabrication of all diamond scanning probes for nanoscale magnetometry
Appel Patrick, Neu Elke, Ganzhorn Marc, Barfuss Arne, Batzer Marietta, Gratz Micha, Tschoepe Andreas, Maletinsky Patrick (2016), Fabrication of all diamond scanning probes for nanoscale magnetometry, in Review of Scientific Instruments, 87, 063703-063703.
Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer
L. Thiel, D. Rohner, M. Ganzhorn, P. Appel, E. Neu, B. Müller, R. Kleiner, D. Koelle, P. Maletinsky (2016), Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer, in Nature Nanotechnology, 11(8), 677-677.
Site selective growth of heteroepitaxial diamond nanoislands containing single SiV centers
Arend Carsten, Appel Patrick, Becker Jonas Nils, Schmidt Marcel, Fischer Martin, Gsell Stefan, Schreck Matthias, Becher Christoph, Maletinsky Patrick, Neu Elke (2016), Site selective growth of heteroepitaxial diamond nanoislands containing single SiV centers, in Appl. Phys. Lett., 108(6), 063111-063111.
High-efficiency resonant amplification of weak magnetic fields for single spin magnetometry at room temperature
Trifunovic Luka, Pedrocchi Fabio L, Hoffman Silas, Maletinsky Patrick, Yacoby Amir, Loss Daniel (2015), High-efficiency resonant amplification of weak magnetic fields for single spin magnetometry at room temperature, in Nature Nanotechnology, 10, 541-541.
Nanoscale microwave imaging with a single electron spin in diamond
Appel Patrick, Ganzhorn Marc, Neu Elke, Maletinsky Patrick (2015), Nanoscale microwave imaging with a single electron spin in diamond, in New Journal of Physics, 17(11), 112001-112001.
Low-Loss Broadband Antenna for Efficient Photon Collection from a Coherent Spin in Diamond
Riedel D., Rohner D., Ganzhorn M., Kaldewey T., Appel P., Neu E., Warburton R. J., Maletinsky P. (2014), Low-Loss Broadband Antenna for Efficient Photon Collection from a Coherent Spin in Diamond, in Physical Review Applied, 2, 064011-064011.
Magnetometry with nitrogen-vacancy defects in diamond
Rondin L, Tetienne J-P, Hingant T, Roch J-F, Maletinsky P, Jacques V (2014), Magnetometry with nitrogen-vacancy defects in diamond, in Reports on Progress in Physics, 77, 56503-56503.
Photonic nano-structures on (111)-oriented diamond
Neu E., Appel P., Ganzhorn M., Miguel-S{á}nchez J., Lesik M., Mille V., Jacques V., Tallaire A., Achard J., Maletinsky P. (2014), Photonic nano-structures on (111)-oriented diamond, in Applied Physics Letters, 104, 153108-153108.

Collaboration

Group / person Country
Types of collaboration
Dr. Vincent Jacques/CNRS, Université de Montpellier France (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Exchange of personnel
Prof. J. Wrachtrup, Uni stuttgart Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Prof. M. Doherty, ANU Canberra Australia (Oceania)
- in-depth/constructive exchanges on approaches, methods or results
Prof. Alex Högele/LMU München Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Prof.s D. Kölle and R. Kleiner, Uni Tübingen Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. Amir Yacoby/Harvard United States of America (North America)
- Publication
Prof. Misha Lukin/Harvard United States of America (North America)
- Publication
Prof. F. Koppens, ICFO, Barcelona Spain (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Exchange of personnel
Prof. R. Quidant, ICFO Barcelona Spain (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Nano confined superconductors and their application Talk given at a conference Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer 03.09.2016 Garmisch Partenkirchen, Germany Thiel Lucas;
Swiss Nanoconvention Talk given at a conference Quantum Senisng and Imaging of Nano-Magnetic Systems 30.06.2016 Basel, Switzerland Maletinsky Patrick;
International Hasselt Diamond Workshop Talk given at a conference Nanoscale Magnetic imaging with a single electron spin in diamond 09.03.2016 Hasselt, Belgium Ganzhorn Marc;
International conference on quantum condensed matter Talk given at a conference Scanning quantum-probe imaging of condensed matter systems 10.02.2016 Engelberg, Switzerland Maletinsky Patrick;
Frontiers in Nanophotonics Talk given at a conference Diamond nanophotonics for quantum sensing and imaging 01.09.2015 Monte Verita, Switzerland Maletinsky Patrick;
Diamond Quantum Sensing Workshop Talk given at a conference Quantum sensing using single spins in diamond nano-devices 03.08.2015 Takamatsu, Japan Maletinsky Patrick;
Swiss Workshop on Materials with Novel Electronic Properties Talk given at a conference Single spin magnetometry for nanoscale magnetic imaging of condensed matter systems 06.07.2015 Les Diablerets, Switzerland Maletinsky Patrick;
Quantum Science and Information Technology Talk given at a conference Quantum sensing using single spins in diamond nano-devices 22.06.2015 Monte Verita, Switzerland Maletinsky Patrick;
International Hasselt Diamond Workshop Talk given at a conference Spin-based quantum sensing using all-diamond nanostructures 02.02.2015 Hasselt, Belgium Maletinsky Patrick;


Self-organised

Title Date Place

Communication with the public

Communication Title Media Place Year
Talks/events/exhibitions Diamant, das Quanten-Material der Zukunft German-speaking Switzerland 2015
Talks/events/exhibitions Warum Physik? German-speaking Switzerland 2015
Talks/events/exhibitions Diamonds – forever ? German-speaking Switzerland 2014
Talks/events/exhibitions Quanten-Technologien zur Erforschung der Nano-Welt German-speaking Switzerland 2014

Associated projects

Number Title Start Funding scheme
155845 Single spin imaging of strongly correlated electron systems 01.06.2015 Temporary Backup Schemes
157770 Basel Shared Frequency Comb Facility 01.12.2014 R'EQUIP
169321 Exploring nanoscale magnetic phenomena using a quantum microscope 01.10.2016 Project funding (Div. I-III)

Abstract

The goal of the proposed program is to exploit the special properties of Nitrogen Vacancy (NV) color centers in diamond to develop and apply a scanning probe magnetometer especially tailored to the study of magnetism in the solid state. Our apparatus will exhibit spatial resolution <10 nm, magnetic field sensitivity better than 10 nT Hz^{-1/2} and will operate under cryogenic conditions. We will apply this novel magnetic probe to a variety of mesoscopic systems that exhibit novel magnetic phenomena, which are hard or impossible to assess using established methods. Our powerful new technology and the scientific insights it will generate will have far-ranging impact in the physical and material sciences and will offer a new view on magnetism on the nanoscale. The planned research is based on our recent breakthroughs in the implementation of room temperature scanning NV-diamond magnetometry. Our work has demonstrated robust operation of this new type of magnetic imaging with 20 nm spatial resolution and the capability to image the dipolar magnetic field of a single electronic spin. Owing to these encouraging developments, NV magnetometry has now evolved to a state where it can be applied to the study of open scientific problems. The immediate applications we envisage for our magnetic imaging apparatus are focussed on studies of magnetic phenomena in mesoscopic systems and will predominantly be conducted at low temperatures. We will study both spin- and charge-transport phenomena in low-dimensional structures such as carbon nanotubes or graphene. Such carbon-based, mesoscopic devices are of great fundamental interest due to their exotic electronic properties which could enable novel applications such as (quantum) information processing elements. Furthermore, we will apply the scanning NV magnetometer to a new class of material-systems formed by self-assembled, DNA-based nanomagnetic structures (so-called “DNAorigamis”). These systems form a completely new class of magnetic materials, the properties of which we will study with our highly sensitive device. The main applicant is Prof. Dr. Patrick Maletinsky, a young assistant professor who is currently initiating the new “Quantum Sensing Lab” at the Institute of Physics at the University of Basel. He has a strong background in mesoscopic physics and quantum optics with a special focus on single quantum emitters like NV centers in diamond or semiconductor quantum dots. He obtained his Diploma in Physics as well as his doctoral degree at ETH Zürich and performed research in some of the world-leading research labs such as Harvard University and JILA at the University of Colorado. Together with international collaborators within groups at Harvard, ENS Cachan, LMU Munich as well as Swiss collaborations in Zürich and in-house in Basel, this project will be part of an outstanding and internationally recognized team which will promote NV-based magnetometers to indispensable tools in nano-science and technology.
-