Project

Back to overview

Synthesis and characterization of porous materials with patterned wettabillity for advanced fuel cell water management strategies

Applicant Boillat Pierre
Number 143432
Funding scheme Project funding (Div. I-III)
Research institution Paul Scherrer Institut
Institution of higher education Paul Scherrer Institute - PSI
Main discipline Material Sciences
Start/End 01.04.2013 - 31.10.2016
Approved amount 215'211.00
Show all

All Disciplines (4)

Discipline
Material Sciences
Organic Chemistry
Chemical Engineering
Fluid Dynamics

Keywords (7)

polymer electrolyte; fuel cell; two phase flow; surface functionalization; gas diffusion layer; graft copolymerization; patterned wettability

Lay Summary (German)

Lead
Neue Materialien für Brennstoffzellen werden entwickelt, um die Transportpfade der Reaktionsgase und des flüssigen Wassers zu kontrollieren. Solche Materialen werden eingesetzt, um die bekannte Problematik des Wasserhaushaltes in dieser Technologie zu vereinfachen.
Lay summary

Inhalt und Ziel des Forschungsprojekts

 

Die Polymerelektrolyt Brennstoffzelle ist eine Alternativtechnologie für Fahrzeuge, die sich durch hohe Effizienz und Abwesenheit von Schadstoff- und Treibhausgasemissionen auszeichnet. Eine bekannte Schwierigkeit ist der Umgang mit flüssigem Wasser, das bei der Reaktion entsteht. In der existierenden Technologie teilen sich die Reaktionsgase und das Produktwasser den gleichen Pfad: Die Gasdiffusionsschicht, ein poröses Material, das mit einer Polymerschicht wasserabstossend gemacht wird. Die Ansammlung von Wasser in dieser Schicht kann zu Leistungsverlust führen.

In Rahmen dieses Projektes werden poröse Materialien mit definierten Transportpfaden für Wasser und Gas entwickelt. In gewählten Bereichen wird die Oberfläche durch eine chemische Reaktion wasseranziehend gemacht. Das Wasser wird durch diese Bereiche abgeführt, während der restliche Raum für den Transport von Gasen frei bleiben wird. Die Reaktion wird in gewählten Bereichen durch Bestrahlung des Materials mit Hilfe einer Maske durchgeführt. Das Projekt umfasst die Entwicklung des Materials und dessen Charakterisierung, auch im echten Brennstoffzellenumfeld.

 

Wissenschaftlicher und Gesellschaftlicher Kontext

 

Das Haupthindernis für die Einführung von Brennstoffzellen ist die Forderung nach einem sehr tiefen Preis. Die in diesem Projekt entwickelten Materialien haben das Potential, durch vereinfachten Wasserhaushalt die Kosten der Technolonogie zu senken und damit deren Einführung mittelfristig zu helfen.

Direct link to Lay Summary Last update: 21.11.2012

Responsible applicant and co-applicants

Employees

Publications

Publication
Mask-assisted electron radiation grafting for localized through-volume modification of porous substrates: influence of electron energy on spatial resolution
Forner-Cuenca A., Manzi-Orezzoli V., Kristiansen P.M., Gubler L., Schmidt T.J., Boillat P. (2017), Mask-assisted electron radiation grafting for localized through-volume modification of porous substrates: influence of electron energy on spatial resolution, in Radiation Physics and Chemistry, 133-141.
Advanced water management in PEFCs: Diffusion layers with patterned wettability: I. Synthetic Routes, Wettability Tuning and Thermal Stability
Forner-Cuenca A., Manzi-Orezzoli V., Biesdorf J., Kazzi M.E., Streich D., Gubler L., Schmidt T.J., Boillat P. (2016), Advanced water management in PEFCs: Diffusion layers with patterned wettability: I. Synthetic Routes, Wettability Tuning and Thermal Stability, in Journal of the Electrochemical Society, (8), 788-801.
Advanced water management in PEFCs: Diffusion layers with patterned wettability: II. Measurement of capillary pressure characteristic with neutron and synchrotron imaging
Forner-Cuenca A., Biesdorf J., Lamibrac A., Manzi-Orezzoli V., Büchi F.N., Gubler L., Schmidt T.J., Boillat P. (2016), Advanced water management in PEFCs: Diffusion layers with patterned wettability: II. Measurement of capillary pressure characteristic with neutron and synchrotron imaging, in Journal of the Electrochemical Society, 163(9), 1038-1048.
Advanced Water Management in PEFCs: Diffusion Layers with Patterned Wettability: III. Operando Characterization with Neutron Imaging
Forner-Cuenca A., Biesdorf J., Manzi-Orezzoli V., Gubler L., Schmidt T. J., Boillat P. (2016), Advanced Water Management in PEFCs: Diffusion Layers with Patterned Wettability: III. Operando Characterization with Neutron Imaging, in Journal of The Electrochemical Society, 163(13), F1389-F1398.
Engineered Water Highways in Fuel Cells: Radiation Grafting of Gas Diffusion Layers
Forner-Cuenca Antoni, Biesdorf Johannes, Gubler Lorenz, Kristiansen Per Magnus, Schmidt Thomas Justus, Boillat Pierre (2015), Engineered Water Highways in Fuel Cells: Radiation Grafting of Gas Diffusion Layers, in ADVANCED MATERIALS, 27(41), 6317-6322.

Collaboration

Group / person Country
Types of collaboration
Fachhochschule Nordwest Schweiz Switzerland (Europe)
- Research Infrastructure
Zürcher Hochschule für Angewandte Wissenschaften (ZHAW) Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results

Communication with the public

Communication Title Media Place Year

Awards

Title Year
ETH Zürich Medal for Outsanding PhD Theses This medal is awarded each year to outstanding PhD students (approximately 5% of the total) graduating from the ETHZ 2017
The Energy Technology Division Graduate Student Award 2017 from the Electrochemical Society (ECS) (http://www.electrochem.org/etd-graduate-student-award) was granted to Antoni Forner-Cuenca for the work realized during this project - Highly competitive award granted to only one graduate student per year. - The award consists of a scroll, a 1000$ money prize, and an invited lecture (incl. complimentary registration and travel support) at the next international ECS Conference. 2016

Associated projects

Number Title Start Funding scheme
172474 Porous materials with patterned wettability for advanced fuel cell water management strategies: improvement of durability and in situ performance 01.04.2017 Project funding (Div. I-III)
185085 Materials and designs for improved freeze-start capability and prevention of freezing damage in fuel cells 01.07.2019 Project funding (Div. I-III)
169913 Coupled multi-phase transport in porous layers for fuel cells utilizing evaporative cooling 01.02.2017 Project funding (Div. I-III)
132382 Antioxidant strategies for the stabilization of fuel cell membranes against oxidative stress 01.10.2010 Project funding (Div. I-III)

Abstract

In this project, we propose a novel method for the synthesis of porous materials with a defined spatial pattern of wettability (hydrophobic and hydrophilic) regions. Such materials could be used in polymer electrolyte fuel cells (PEFCs) to develop advanced water management strategies such as the humidification of the cell by injection of liquid water and the mitigation of the effect of water accumulation on gas transport. The improved water management in PEFCs is expected to yield significant benefits in terms of cost reduction and extended durability.The proposed synthesis method is based on the surface modification of the materials fluoropolymer coatings by radiation-induced graft copolymerization. The base material with a base hydrophobic coating is irradiated according to defined patterns (using masks). By further impregnation in a grafting solution, the surface of the coating in the exposed regions is modified to become hydrophilic. The study and development of this synthesis method will benefit from the expertise existing in the PSI Electrochemisty Laboratory in the field of radiation-induced graft copolymerization, a method which has been extensively used in the last year for the synthesis of fuel cell membrane materials.The project will focus on the synthesis and characterization of material samples based on the proposed method. The study of the synthesis will include the evaluation of the different aspects of the proposed generic method, including the choice of base polymer coating, the type of irradiation and the choice of compounds for the surface modification. The sample characterization will include standard contact angle measurements as well as locally resolved measurement based on imaging methods such as energy-dispersive X-ray spectroscopy (EDX), neutron radiography and synchrotron X-ray tomography.Finally, the study will be completed by the in situ characterization of selected samples in operating PEFCs: the liquid water distribution will be measured using neutron imaging and the effect of water accumulation on cell performance will be evaluated using the helox pulse method recently developed in our laboratory.
-