Project

Back to overview

Laboratory low-frequency seismic attenuation measurements of reservoir rocks

English title Laboratory low-frequency seismic attenuation measurements of reservoir rocks
Applicant Burg Jean-Pierre
Number 143300
Funding scheme Project funding (Div. I-III)
Research institution Departement Erdwissenschaften ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Other disciplines of Earth Sciences
Start/End 01.01.2013 - 31.12.2014
Approved amount 259'281.00
Show all

Keywords (6)

laboratory methods; rock deformation; shales; carbonates; sandstones; wave propagation

Lay Summary (German)

Lead
Eine präzise Charakterisierung von Gesteinen mit deren Porenfüllung erlaubt eine gezielte Identifikation derselben mittels moderner geophysikalischen Methoden. Dieses Prinzip ist Standardin der Kohlenwasserstoffexploration. Es wird jedoch auch in anderen Forschungsdisziplinen angewandt; zum Beispiel in der Erdbebenforschung. Insbesondere die Dämpfung seismischer Wellen ist hierbei wichtig, um eine Aussage über die sättigenden Flüssigkeiten zu machen.
Lay summary

Inhalt und Ziel des Forschungsprojekts

 

Unser übergeordnetes Ziel ist, einen an der ETH entwickelten Prototyp zur Messung von flüssigkeitsgefüllten Gesteinen weiter zu entwickeln. Die technische Herausforderung ist hierbei sowohl den Porendruck als auch die Temperatur exakt einstellen zu können. Gleichzeitig werden wir für verschiedene Reservoirgesteine (Sandstein, Karbonate und Schiefergestein) die seismische Dämpfung messen. Diese können in der Natur große Mengen an verschiedenen Flüssigkeiten enthalten: Wasser, Öl und Gas. Die Ergebnisse werden verwendet um bekannte Theorien zu ergänzen damit diese in der Praxis angewendet werden können. Bis zum heutigen Zeitpunkt ist die Theorie der Wellenausbreitung in flüssigkeitsgefüllten Medien Inhalt zahlreicher Publikationen.

Wissenschaftlicher und gesellschaftlicher Kontext des Forschungsprojekts

Unsere Arbeit wird helfen die weltweite Spitzenposition des Gesteinslabors an der ETH Zürich weiter zu festigen. Unsere Ergebnisse sind nicht nur für internationale Explorationsfirmen von erheblichen Interesse. Auch die Geothermie, eine mögliche Energiequelle in der Schweiz, kann
langfristig von unseren Experimenten profitieren.
Direct link to Lay Summary Last update: 05.12.2012

Responsible applicant and co-applicants

Employees

Publications

Publication
Moving across scales: a quantitative assessment of X-ray CT to measure the porosity of rocks
Pini R. Madonna C. (2016), Moving across scales: a quantitative assessment of X-ray CT to measure the porosity of rocks, in Journal of Porous Materials, 23(2), 325-338.
Laboratory based seismic attenuation in Fontainebleau sandstone: Evidence of squirt flow
Subramaniyan S. Quintal B. Madonna C. Saenger E.H. (2015), Laboratory based seismic attenuation in Fontainebleau sandstone: Evidence of squirt flow, in Journal of Geophysical Research, Solid Earth, 120(11), 7526-7535.
An overview of laboratory apparatuses to measure seismic attenuation in reservoir rocks
Subramaniyan Shankar, Quintal B., Tisato N., Saenger Erik H., Madonna Claudio (2014), An overview of laboratory apparatuses to measure seismic attenuation in reservoir rocks, in Geophysical Prospecting, 62(6), 1211-1223.
Frequency-dependent seismic attenuation in shales: Experimental results and theoretical analysis
Delle Piane Claudio, Sarout J., Madonna Claudio, Saenger Erik H., Dewhurst D. N., Raven M. (2014), Frequency-dependent seismic attenuation in shales: Experimental results and theoretical analysis, in Geophysical Journal International, 198(1), 504-515.
Numerical support of laboratory experiments: Attenuation and velocity estimations
Saenger Erik H., Madonna Claudio, Frehner Marcel, Almquvist B. S. G. (2014), Numerical support of laboratory experiments: Attenuation and velocity estimations, in Acta Geophysica, 62(1), 1-11.
Seismic attenuation in partially saturated rocks: recent advances and future directions
Tisato N., Quintal B., Chapman S., Madonna Claudio, Subramaniyan Shankar, Frehner M., Saenger Erik H. (2014), Seismic attenuation in partially saturated rocks: recent advances and future directions, in The Leading Edge, 33(6), 640-646.

Collaboration

Group / person Country
Types of collaboration
Prof. Dr.-Ing. Holger Steeb, Ruhr-University Bochum Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
PD Dr. Erik Reusser, ETH Zurich Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Dr. Claudio DellePiane, CSIRO Australia (Oceania)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Claudio Madonna and Nicola Tisato, ETH Zurich Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Dr. Beatriz Quintal, ETH Zurich Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. Dr. Georg P. Eberli, U Miami United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results
Dr. Marcel Frehner Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Swiss Geoscience Meeting Individual talk Seismic attenuation in sandstones 22.11.2014 Fribourg, Switzerland Subramaniyan Shankar; Saenger Erik H.; Madonna Claudio;
Euroconference on Rock Physics and Rock Mechanics Individual talk Seismic attenuation at low frequencies in partially saturated rocks: what we have learnt, and new prospective 12.05.2014 Aussois, France Saenger Erik H.; Madonna Claudio;
Swiss Geoscience Meeting Poster Seismic attenuation: Laboratory measurements in fluid saturated rocks 16.11.2013 Lausanne, Switzerland Saenger Erik H.; Madonna Claudio; Subramaniyan Shankar;
SEG Annual Meeting Poster Seismic wave attenuation for partially saturated sandstone as a function of confining pressure 22.09.2013 Houston, TX, United States of America Madonna Claudio; Saenger Erik H.;
SBGf Conference Individual talk Laboratory apparatuses for measuring seismic attenuation in fluid-saturated rocks 26.08.2013 Rio de Janero, Brazil Saenger Erik H.; Madonna Claudio;


Associated projects

Number Title Start Funding scheme
144980 Manufacturing synthetic rocks in the Rock Deformation Laboratory, ETH: Hot Isostatic Press Upgrade (HIP UP) 01.12.2012 R'EQUIP
157772 HighSTEPS : HighStrainTEmperaturePressureSpeed 01.10.2015 R'EQUIP

Abstract

This project aims to quantify and to understand in the laboratory low-frequency seismic attenuation to characterize reservoir rocks. This is one key parameter used in seismic exploration for fluid discrimination (e.g. Quintal 2012). To achieve this goal we request funding for three years for one Postdoc and one Ph.D. student, together with laboratory equipment, consumables and limited expenses for travelling. This proposal continues and extends research that was initiated by the main applicant in 2007, seeking to determine and to understand seismic attenuation in the laboratory with supporting numerical studies (KTI 9577.1 PFIW_IW; DFG SA 996/1-2). The Seismic Wave Attenuation Module (SWAM) we employ is a unique module that has been developed in our laboratory, at the ETH Zurich, to experimentally measure the seismic attenuation in fluid-bearing rocks. It uses natural rock samples in an efficient way at in situ conditions and employs linear variable differential transformers (LVDTs). The apparatus precisely measures the viscoelastic behavior of rocks at different saturation conditions at low seismic frequencies (10-2 -102 Hz). The SWAM is designed to operate at a strain below 10-6, where rocks behave linearly, and it allows measuring any kind of rock type independent of their heterogeneity (Madonna and Tisato, 2012; DellePiane et al. 2012). However, the SWAM is a prototype that needs further adjustments and modifications to characterize reservoir rocks at reservoir conditions. Consequently, the proposed project consists in three parts complementing each other. The first part is dealing with further technical development of the SWAM module. The goal is to measure seismic attenuation where, in addition to the current setup, temperature and pore pressure can be controlled. In the second part we will apply the improved SWAM module to characterize the most common reservoir rocks: Shales, sandstones and carbonates, which typically can contain fluids, in particular water, oil and gas in appreciable quantity. Third, an interpretation and integration of our experimental findings will be used to calibrate theoretical models of poroelasticity.To summarize: We will provide, for the first time, low-frequency measurements of different rock types under reservoir conditions. This knowledge will be integrated with theoretical investigations to further understand the physical mechanism of seismic attenuation. Our findings can be applied in hydrocarbon exploration and other related fields (e.g. geothermal reservoirs). We expect longer-term applications to deeper geological conditions, for example seismic signals of dehydrating rocks under metamorphic conditions in both oceanic and continental environments or overpressured lithologies in accretionary wedges. This project will further strengthen the world leading Rock Deformation Lab at the ETH Zurich.
-