Projekt

Zurück zur Übersicht

Autonomous Airborne Wind Energy (A2WE)

Titel Englisch Autonomous Airborne Wind Energy (A2WE)
Gesuchsteller/in Jones Colin
Nummer 141836
Förderungsinstrument Sinergia
Forschungseinrichtung Laboratoire d'automatique EPFL - STI - IGM - LA1
Hochschule EPF Lausanne - EPFL
Hauptdisziplin Maschineningenieurwesen
Beginn/Ende 01.04.2013 - 31.03.2017
Bewilligter Betrag 1'400'312.00
Alle Daten anzeigen

Alle Disziplinen (2)

Disziplin
Maschineningenieurwesen
Elektroingenieurwesen

Keywords (3)

airborne wind power; automatic control; system identification and modeling

Lay Summary (Englisch)

Lead
There is enough energy available in the wind to provide renewable power on a global basis. However, at the majority of accessible locations, usable winds are only available at altitudes which modern turbines cannot reach. The A2WE project will develop a concept in which airfoils are flown at high altitudes, transmitting power to a generator on the ground through a physical tether. Initial studies suggest that this novel approach has the potential for an extremely favorable economic situation.
Lay summary
1. Lead

There is more than enough energy available in the wind to provide renewable power at a utility scale on a global basis. However, at the majority of accessible geographic locations, high-speed and consistent winds are only available at altitudes above which modern turbines cannot today reach, nor will they economically be able to in the future due to physical scaling limitations. The Autonomous Airborne Wind Energy (A2WE) project will develop a paradigm-shifting concept in which airfoils are flown at high altitudes (~500m), transmitting mechanical power to a generator on the ground through a physical tether. Initial studies suggest that this novel approach has the potential for an extremely favorable economic situation.

Team members: EPFL (control), ETH (aerodynamic modeling), FHNW (mechanical design)

2. Aims of the research project

A2WE will target a particularly challenging requirement of airborne power systems: fully autonomous, power-optimizing flight of an airborne generation system in variable weather conditions.

To achieve this goal, the project will: - Provide a concrete understanding of, and optimization models for, kite power systems - Enable fully autonomous flight in varying weather conditions - Demonstrate an airborne wind power concept under autonomous control - Release a flexible, open-source simulation and control platform for kite-power systems

3. Scientific and societal context of the research project

Kite power systems have the potential to radically shift the economics of renewable power by significantly reducing the price-point of wind energy, while simultaneously increasing the geographic locations where generation is feasible. Long-term potential benefits to Swiss society include the economic advantages of being leaders in this fledgling industry, as well as the environmental gains of introducing a new utility-scale green-energy source.
Direktlink auf Lay Summary Letzte Aktualisierung: 08.02.2013

Verantw. Gesuchsteller/in und weitere Gesuchstellende

Mitarbeitende

Publikationen

Publikation
Control synthesis for stochastic systems given automata specifications defined by stochastic sets
Kamgarpour Maryam, Wood Tony A., Summers Sean, Lygeros John (2017), Control synthesis for stochastic systems given automata specifications defined by stochastic sets, in Automatica, 76, 177-182.
Predictive Control of Autonomous Kites in Tow Test Experiments
Wood Tony A, Hesse Henrik, Smith Roy S (2017), Predictive Control of Autonomous Kites in Tow Test Experiments, in IEEE Control Systems Letters, 1.
Robust Control Policies Given Formal Specifications in Uncertain Environments
Frick Damian, Wood Tony A, Ulli Gian, Kamgarpour Maryam (2017), Robust Control Policies Given Formal Specifications in Uncertain Environments, in IEEE Control Systems Letters, 1(1), 20-25.
A Nonlinear Adaptive Controller for Airborne Wind Energy Systems
Diwale Sanket, Alessandretti Andrea, Lymperopoulos Ioannis, Jones Colin N. (2016), A Nonlinear Adaptive Controller for Airborne Wind Energy Systems, in Proceedings of the American Control Conference, Boston, MAIEEE, Boston, MA.
Automaton-based stochastic control for navigation of emergency rescuers in buildings
Wood Tony A., Kamgarpour Maryam (2016), Automaton-based stochastic control for navigation of emergency rescuers in buildings, in 2016 IEEE Conference on Control Applications (CCA), Buenos Aires, ArgentinaIEEE, Buenos Aires, Argentina.
Improved Path Following for Kites with Input Delay Compensation
Rontsis Nikitas, Lymperopoulos Ioannis, Costello Sean, Jones Colin (2015), Improved Path Following for Kites with Input Delay Compensation, in IEEE Conference on Decision and Control, Osaka, JapanIEEE, Osaka, Japan.
Model-based flight path planning and tracking for tethered wings
Wood Tony A., Hesse Henrik, Zgraggen Aldo U., Smith Roy S. (2015), Model-based flight path planning and tracking for tethered wings, in 54th IEEE Conference on Decision and Control (CDC), OsakaIEEE, Osaka.
Model-based identification and control of the velocity vector orientation for autonomous kites
Wood Tony A., Hesse Henrik, Zgraggen Aldo U., Smith Roy S. (2015), Model-based identification and control of the velocity vector orientation for autonomous kites, in 2015 American Control Conference (ACC), Chicago, IL, USAIEEE, Chicago, IL, USA.
Optimization of an Airborne Wind Energy System using Constrained Gaussian Processes with Transient Measurements
Diwale Sanket S., Lymperopoulos Ioannis, Jones Colin N (2015), Optimization of an Airborne Wind Energy System using Constrained Gaussian Processes with Transient Measurements, in IEEE Indian Control Conference, Chennai, IndiaIEEE, Chennai, India.
Range-inertial estimation for airborne wind energy
Millane Alexander, Hesse Henrik, Wood Tony A., Smith Roy S. (2015), Range-inertial estimation for airborne wind energy, in 2015 54th IEEE Conference on Decision and Control (CDC), OsakaIEEE, Osaka.
Optimization of an Airborne Wind Energy System Using Constrained Gaussian Processes
Diwale Sanket S., Lymperopoulos Ioannis, Jones Colin N (2014), Optimization of an Airborne Wind Energy System Using Constrained Gaussian Processes, in IEEE Multi-Conference on Systems and Control, Antibes / Nice, FranceIEEE, Antibes / Nice, France.
Economics of Pumping Kite Generators
Heilmann Jannis, Houle Corey (2013), Economics of Pumping Kite Generators, in Ahrens Uwe (ed.), Springer, Green Energy and Technology, 271-284.
Model Predictive Path-Following Control for Airborne Wind Energy Systems
Diwale Sanket, Faulwasser Timm, Jones Colin, Model Predictive Path-Following Control for Airborne Wind Energy Systems, in 20th IFAC World Congress, Toulouse, FranceElsevier, Toulouse, France.
Predictive Guidance Control for Autonomous Kites with Input Delay
Wood T. A., Ahbe E., Hesse H., Smith R. S., Predictive Guidance Control for Autonomous Kites with Input Delay, in IFAC World Congress, Toulouse, FranceIFAC, Toulouse, France.
Pumping Cycle Kite Power with Twings
Luchsinger Rolf H, Aregger Damian, Bezard Florian, Costa Dino, Galliot Cedric, Gohl Flavio, Heilmann Jannis, Hesse Henrik, Houle Corey, Wood Tony A., Smith Roy S., Pumping Cycle Kite Power with Twings, in Airborne Wind Energy II, Berlin, GermanySpringer, Berlin, Germany.
State Estimation for Kite Power Systems with Delayed Sensor Measurements
Polzin Max, Wood Tony A., Hesse Henrik, Smith Roy S., State Estimation for Kite Power Systems with Delayed Sensor Measurements, in IFAC World Congress, Toulouse, FranceIFAC, Toulouse, France.
Visual Motion Tracking and Sensor Fusion for Ground-Based Kite Power Systems
Hesse Henrik, Polzin Max, Wood Tony A., Smith Roy S., Visual Motion Tracking and Sensor Fusion for Ground-Based Kite Power Systems, in Airborne Wind Energy II, Springer, Berlin, Germany.

Zusammenarbeit

Gruppe / Person Land
Formen der Zusammenarbeit
TwingTec Schweiz (Europa)
- vertiefter/weiterführender Austausch von Ansätzen, Methoden oder Resultaten
- Forschungsinfrastrukturen
- Austausch von Mitarbeitern
- Industrie/Wirtschaft/weitere anwendungs-orientierte Zusammenarbeit

Wissenschaftliche Veranstaltungen

Aktiver Beitrag

Titel Art des Beitrags Titel des Artikels oder Beitrages Datum Ort Beteiligte Personen
Airborne Wind Energy Conference Vortrag im Rahmen einer Tagung Mobile wind farms using tethered wings - technical and economic considerations 14.06.2015 Delft, Niederlande Houle Corey;
Airborne Wind Energy Conference Vortrag im Rahmen einer Tagung Predictive Control of an Airborne Wind Energy System using Gaussian Process Models 14.06.2015 Delft, Niederlande Lymperopoulos Ioannis; Jones Colin; Diwale Sanket;
Airborne Wind Energy Conference Poster Visual motion tracking for estimation of kite dynamics 14.06.2015 Berlin, Deutschland Hesse Henrik; Smith Roy; Wood Tony;
Airborne Wind Energy Conference Vortrag im Rahmen einer Tagung Closing the gap: pumping cycle kite power with Twings 14.06.2015 Delft, Niederlande Wood Tony; Heilmann Jannis; Houle Corey; Aregger Damian; Hesse Henrik; Smith Roy;
Airborne Wind Energy Conference Einzelvortrag Autonomous pumping cycles of tethered wings 14.06.2015 Berlin, Deutschland Millane Alex; Hesse Henrik; Wood Tony; Smith Roy;
Airborne Wind Energy Conference Vortrag im Rahmen einer Tagung Hardware in the loop based testing for autonomous airborne wind energy systems 14.06.2015 Delft, Niederlande Houle Corey; Heilmann Jannis; Smith Roy; Aregger Damian; Hesse Henrik;
Airborne Wind Energy Conference Vortrag im Rahmen einer Tagung Optimal Altitude Estimation for Power Generating Kites in an Uncertain Wind-Field 14.09.2013 Berlin, Deutschland Jones Colin; Lymperopoulos Ioannis;
Airborne Wind Energy Conference Vortrag im Rahmen einer Tagung SwissKitePower – A Collaborative R&D Project 14.09.2013 Berlin, Deutschland Houle Corey; Burtscher Heinz; Heilmann Jannis;


Selber organisiert

Titel Datum Ort
Kite Power Workshop 5 12.03.2015 Pontresina, Schweiz
Kite Power Workshop 4 06.03.2014 Pontresina, Schweiz
Kite Power Workshop 3 03.07.2013 Pontresina, Schweiz

Kommunikation mit der Öffentlichkeit

Kommunikation Titel Medien Ort Jahr
Medienarbeit: Printmedien, Online-Medien Bilanz Article Bilanz Article Deutschschweiz 2014
Referate/Veranstaltungen/Ausstellungen Presentation at Venture Ideas @EPFL Westschweiz 2014
Medienarbeit: Printmedien, Online-Medien 20 Minuten News Article 20 Minuten News Article Deutschschweiz 2013
Medienarbeit: Radio, Fernsehen SF1 Einstein TV Show Appearance SF1 Einstein Deutschschweiz 2013
Medienarbeit: Radio, Fernsehen SF1 Tagesschau Appearance SF1 Tagesschau Appearance Deutschschweiz 2013

Auszeichnungen

Titel Jahr
Drones for Good (finalist) 2017
Expo Astana (finalist) 2017
Best master thesis 2016 by the Swiss Society of Automatic Control: M. Polzin. Modeling and sensor fusion for improved state and parameter estimation in airborne wind energy, 2016. 2016
Best presentation in Airborne Wind Energy session at the American control Conference for the paper "Model-based identification and control of the velocity vector orientation for autonomous kites" 2015
Swiss Innovation Challenge (finalist) 2015
The paper "Optimization of an Airborne Wind Energy System using Constrained Gaussian Processes with Transient Measurements", by Sanket Diwale, Ioannis Lymperopoulos and Colin N. Jones was on the finalist list for the Best Student Paper Award at ICC 2015. 2015
Venture Leaders China (participant) 2015
Pionierpreiz 2014 - Finalists http://twingtec.ch/twingtec-selected-for-the-final-of-the-pionierpreis-2015/ 2014
Swiss Technology Awards 2014 - Finalists http://www.swiss-innovation.com/award/finalisten 2014
Venture Kick 2014 - Winner http://www.venturekick.ch/index.cfm?CFID=357222202&CFTOKEN=95303747&page=129801&article_id=1463&JumpToAnchor=fgBerichtAnker_5641&BackPage=129731 2014
Venture Leaders 2014 - Participant http://www.venturelab.ch/20-Swissbased-entrepreneurs-selected-for-2014-Swiss-National-Startup-Team 2014

Anwendungsorientierte Outputs


Start-ups

Name Jahr
TwingTec 2013

Abstract

There is more than enough energy available in the wind to provide renewable power at a utility scale on a global basis. However, at the majority of accessible geographic locations, high-speed and consistent winds are only available at altitudes above which modern turbines cannot today reach, nor will they economically be able to in the future due to physical scaling limitations. A cubic relation between wind speed and power strongly motivates a new concept capable of capturing energy from faster and more consistent winds available at higher altitudes.The Autonomous Airborne Wind Energy (A2WE) project will develop a paradigm-shifting concept in which airfoils are flown at high altitudes (~500m), transmitting mechanical power to a generator on the ground through a physical tether. This novel approach was first proposed in 1980 by Loyd and preliminary studies have indicated the potential for an extremely favorable economic situation if several technical challenges can be overcome. A2WE will target a particularly challenging requirement of such a system: fully autonomous, power-optimizing flight of an airborne generation system in variable weather conditions.Achieving this goal will require both fundamental research, as well as practical development, in the fields of dynamic modeling and identification, optimal control and mechanical and electrical design. The A2WE consortium has been assembled to undertake this highly collaborative task:- The ETH team, led by Prof. Roy Smith, have an extensive track record in aerodynamics, system modeling and identification procedures with both a strong theoretical knowledge, as well as a long history of practical application.- The EPFL team, under the direction of Prof. Colin Jones, provides expertise in control and optimization, with a strong research background in real-time optimization-based control.- The FHNW team, in the group of Prof. Heinz Burtscher, have been designing kite generation systems for three years and bring significant experience in power systems and mechanical design.The consortium will individually push the boundaries in their respective fields, while cooperating to develop a unique kite power test bench, which will be used to prove the concept of airborne power. The team has a history of positive collaboration and is the ideal group to succeed at this challenging and important research.The following deliverables are expected:- Advanced modeling and identification methods for unstable systems in controlled periodic orbits, providing a concrete understanding of, and optimization models for, kite power systems.- Optimal control methods for tracking of nonlinear, unstable periodic systems, enabling fully autonomous flight in varying weather conditions.- Demonstration of an airborne wind power concept under autonomous control, including a novel launching and landing mechanism.- Flexible, open-source simulation and control platform simKite for kite-power systems.
-