Projekt

Zurück zur Übersicht

Towards understanding the determinants of stream macroinvertebrate responses to environmental change mediated by glacial recession

Titel Englisch Towards understanding the determinants of stream macroinvertebrate responses to environmental change mediated by glacial recession
Gesuchsteller/in Robinson Christopher
Nummer 135523
Förderungsinstrument Projektförderung (Abt. I-III)
Forschungseinrichtung Eawag
Hochschule Eidg. Anstalt für Wasserversorgung, Abwasserreinigung und Gewässerschutz - EAWAG
Hauptdisziplin Oekologie
Beginn/Ende 01.10.2011 - 28.02.2015
Bewilligter Betrag 288'000.00
Alle Daten anzeigen

Alle Disziplinen (3)

Disziplin
Oekologie
Hydrologie, Limnologie, Glaziologie
Umweltforschung

Keywords (8)

glacier retreat; stream ecology; macroinvertebrates; genetics; stream insect; plasticity; environmental change; alpine

Lay Summary (Englisch)

Lead
Lay summary

The world is currently experiencing a major biodiversity crisis due to human activities. A primary concern is the on-going and rapid biological consequences of global climate change. Climate change is impacting alpine landscapes at unprecedented rates, with severe impacts on landscape structure and catchment hydrodynamics, as well as temperature regimes of glacial-fed rivers. Most glaciers are expected to be dramatically reduced and many even gone by the year 2100, concomitantly with changes (timing and magnitude) in temperature and precipitation. These environmental changes are predicted to have strong impacts on the persistence and distribution of alpine organisms, their population structure and community assembly, and, ultimately, ecosystem functioning. However, how alpine biodiversity (aquatic macroinvertebrates in our case) will respond to these changes is poorly understood. Most previous studies predict the presence of species based on the distribution of putatively suitable habitats but ignore biotic traits, such as dispersal, and potential eco-evolutionary responses to such changes. Clearly, accurate predictions on species responses require integrative studies incorporating landscape dynamics with eco-evolutionary processes. The primary goal of the proposed research is to empirically test determinants of alpine macroinvertebrate responses to rapid environmental change mediated by glacial recession.

            Climate-induced glacial retreat is occurring rapidly and in a replicated fashion (i.e. over multiple catchments and continents), which provides a natural experiment for testing determinants of organismal and species diversity responses to climate change in alpine waters. The responses of alpine aquatic macroinvertebrates are highly important because of their known sensitivity (i.e. response rates) to environmental change and their fundamental role in ecosystem functioning. Using an integrative comparative and experimental approach, we will target the following main question: What are the roles of ecological and evolutionary processes in population level responses of macroinvertebrates to environmental change?

            The study will take advantage of rapid glacial recession (environmental change) to empirically examine spatio-temporal patterns in species distribution in nature, combined with experimental and population genetics approaches. The data generated will be used to explicitly address the role of eco-evolutionary processes (determinants) on population level responses for selected key species. Spatial and temporal variation in species distribution, phenotypic and genetic variation will be quantified for two stream macroinvertebrates (hemimetabolous mayfly Baetis alpinus, holometabolous caddisfly Allogamus uncatus), and measuring landscape features and physico-chemical parameters along longitudinal transects downstream of glaciers and selected side-slope tributaries (as potential stepping stones for dispersal and colonization). The two species will also be examined for intra-specific phenotypic and molecular genetic variation. The study will use experimental tests in the field (transplant experiments) and laboratory (common garden experiments) to elucidate the relative roles of abiotic factors and biotic interactions in determining biotic responses.

Direktlink auf Lay Summary Letzte Aktualisierung: 21.02.2013

Verantw. Gesuchsteller/in und weitere Gesuchstellende

Mitarbeitende

Publikationen

Publikation
Spatio-temporal and thermal limit differences in two cryptic linages of Baetis alpinus
Ramsauer Philipp (2014), Spatio-temporal and thermal limit differences in two cryptic linages of Baetis alpinus.
The contribution of tributaries to macroinvertebrate diversity in glacial catchments
Alther Roman (2012), The contribution of tributaries to macroinvertebrate diversity in glacial catchments.

Zusammenarbeit

Gruppe / Person Land
Formen der Zusammenarbeit
Western Wyoming College Vereinigte Staaten von Amerika (Nordamerika)
- vertiefter/weiterführender Austausch von Ansätzen, Methoden oder Resultaten

Verbundene Projekte

Nummer Titel Start Förderungsinstrument
152815 Eco-evolutionary dynamics and cryptic species in the alpine mayfly Baetis alpinus in glacial streams 01.03.2015 Projektförderung (Abt. I-III)
119735 Terrestrial/aquatic linkages in microbial biodiversity in alpine floodplains: Shifting role of bacteria in ecosystem functioning (MICROLINK) 01.07.2008 Projektförderung (Abt. I-III)

Abstract

The world is currently experiencing a major biodiversity crisis due to human activities. A primary concern is the on-going and rapid biological consequences of global climate change. Climate change is impacting alpine landscapes at unprecedented rates, with severe impacts on landscape structure and catchment hydrodynamics, as well as temperature regimes of glacial-fed rivers. Most glaciers are expected to be dramatically reduced and many even gone by the year 2100, concomitantly with changes (timing and magnitude) in temperature and precipitation. These environmental changes are predicted to have strong impacts on the persistence and distribution of alpine organisms, their population structure and community assembly, and, ultimately, ecosystem functioning. However, how alpine biodiversity (aquatic macroinvertebrates in our case) will respond to these changes is poorly understood. Most predictions have been based on simple climate envelope/habitat template approaches that predict the presence of species based on the distribution of putatively suitable habitats but ignore biotic traits, such as dispersal, and potential eco-evolutionary responses to such changes. Clearly, accurate predictions on species responses require integrative studies incorporating landscape dynamics with eco-evolutionary processes. The primary goal of the proposed research is to empirically test determinants of alpine macroinvertebrate responses to rapid environmental change mediated by glacial recession.Climate-induced glacial retreat is occurring rapidly and in a replicated fashion (i.e. over multiple catchments and continents), which provides a natural experiment for testing determinants of organismal and species diversity responses to climate change in alpine waters. The responses of alpine aquatic macroinvertebrates are highly important because of their known sensitivity (i.e. response rates) to environmental change and their fundamental role in ecosystem functioning. Using an integrative comparative and experimental approach, we will target the following main question:What are the roles of ecological and evolutionary processes in population level responses of macroinvertebrates to environmental change?The study will take advantage of rapid glacial recession (environmental change) to empirically examine spatio-temporal patterns in species distribution in nature, combined with experimental and population genetics approaches. The data generated will be used to explicitly address the role of eco-evolutionary processes (determinants) on population level responses for selected key species. Spatial and temporal variation in species distribution, phenotypic and genetic variation will be quantified by sampling stream macroinvertebrates, and measuring landscape features and physico-chemical parameters along longitudinal transects in a replicated fashion (i.e. replicated glacial catchments) downstream of glaciers and selected side-slope tributaries (as potential stepping stones for dispersal and colonization). In a subset of catchments (n = 5), temporal changes in the distribution and density of selected species (hemimetabolous mayfly Baetis alpinus, holometabolous caddisfly Allogamus uncatus) will be compared to data from studies completed ca. 10 years previously. The two species will also be examined for intra-specific phenotypic and molecular genetic variation. The study will use experimental tests in the field (transplant experiments) and laboratory (common garden experiments) to elucidate the relative roles of abiotic factors and biotic interactions in determining biotic responses.
-