Project

Back to overview

Quantum Magnetism - Dimer Physics and Dipolar Criticality

English title Quantum Magnetism - Dimer Physics and Dipolar Criticality
Applicant Ronnow Henrik M.
Number 130522
Funding scheme Project funding (Div. I-III)
Research institution Laboratoire de magnétisme quantique EPFL - SB - IPMC - LQM
Institution of higher education EPF Lausanne - EPFL
Main discipline Condensed Matter Physics
Start/End 01.04.2010 - 31.03.2013
Approved amount 667'410.00
Show all

Keywords (5)

phase transitions; neutron scattering; magnetism; dipolar; quantum magnetism

Lay Summary (English)

Lead
Lay summary
Quantum magnetism remains at the forefront of condensed matter physics. On one hand, it provides the ideal arena for developing and testing new fundamental concepts in solid-state and statistical physics, on the other hand it has a pivotal role in several classes of emerging materials with new electronic properties, e.g. the high-temperature superconducting cuprates and potentially solid state quantum information processing.This project combines two successful research programs within the Laboratory for Quantum Magnetism and its collaborators. A) Dimer Physics concern synthesis and experiments on materials hosting spin-1/2 pairs - the archetype of quantum entanglement - as building block for the occurrence of novel quantum phenomena and phases: Hard-core boson statistics, Bose-Einstein condensation, quantum phase transitions (QPTs) to new phases such as supersolids, and possible mechanisms to superconductivity. B) Dipolar Criticality is the experimental and theoretical investigation of quantum and thermal phase transitions, spin-glassiness and other phenomena in a family of insulating magnetic compounds, where dipolar forces between highly anisotropic rare-earth moments determine the effective model Hamiltonian.
Direct link to Lay Summary Last update: 21.02.2013

Responsible applicant and co-applicants

Employees

Publications

Publication
Determining the Short-Range Spin Correlations in the Spin-Chain Li2CuO2 and CuGeO3 Compounds Using Resonant Inelastic X-Ray Scattering
Monney Claude, Bisogni Valentina, Zhou Ke-Jin, Kraus Roberto, Strocov Vladimir N., Behr Guenter, Malek Jiri, Kuzian Roman, Drechsler Stefan-Ludwig, Johnston Steve, Revcolevschi Alexandre, Buechner Bernd, Ronnow Henrik M., van den Brink Jeroen, Geck Jochen, Schmitt Thorsten (2013), Determining the Short-Range Spin Correlations in the Spin-Chain Li2CuO2 and CuGeO3 Compounds Using Resonant Inelastic X-Ray Scattering, in PHYSICAL REVIEW LETTERS, 110(8), 087403.
Field-Induced Quantum Soliton Lattice in a Frustrated Two-Leg Spin-1/2 Ladder
Casola F., Shiroka T., Feiguin A., Wang S., Grbie M. S., Horvatie M., Kraemer S., Mukhopadhyay S., Conder K., Berthier C., Ott H. -R., Ronnow H. M., Rueegg Ch., Mesot J. (2013), Field-Induced Quantum Soliton Lattice in a Frustrated Two-Leg Spin-1/2 Ladder, in PHYSICAL REVIEW LETTERS, 110(18), 014408.
Glassy low-energy spin fluctuations and anisotropy gap in La1.88Sr0.12CuO4
Romer A. T., Chang J., Christensen N. B., Andersen B. M., Lefmann K., Maehler L., Gavilano J., Gilardi R., Niedermayer Ch., Ronnow H. M., Schneidewind A., Link P., Oda M., Ido M., Momono N., Mesot J. (2013), Glassy low-energy spin fluctuations and anisotropy gap in La1.88Sr0.12CuO4, in PHYSICAL REVIEW B, 87(14), 144513.
Low-energy spin dynamics of the s=1/2 kagome system herbertsmithite
Nilsen G. J., de Vries M. A., Stewart J. R., Harrison A., Ronnow H. M. (2013), Low-energy spin dynamics of the s=1/2 kagome system herbertsmithite, in JOURNAL OF PHYSICS-CONDENSED MATTER, 25(10), 106001.
Low-temperature spin dynamics of a valence bond glass in Ba2YMoO6
de Vries M. A., Piatek J. O., Misek M., Lord J. S., Ronnow H. M., Bos J-W G. (2013), Low-temperature spin dynamics of a valence bond glass in Ba2YMoO6, in NEW JOURNAL OF PHYSICS, 15, 043024.
Anisotropic Cascade of Field-Induced Phase Transitions in the Frustrated Spin-Ladder System BiCu2PO6
Kohama Yoshimitsu, Wang Shuang, Uchida Atsuko, Prsa Krunoslav, Zvyagin Sergei, Skourski Yuri, McDonald Ross D., Balicas Luis, Ronnow Henrik M., Rueegg Christian, Jaime Marcelo (2012), Anisotropic Cascade of Field-Induced Phase Transitions in the Frustrated Spin-Ladder System BiCu2PO6, in PHYSICAL REVIEW LETTERS, 109(16), 167204.
Dipolar Antiferromagnetism and Quantum Criticality in LiErF4
Kraemer Conradin, Nikseresht Neda, Piatek Julian O., Tsyrulin Nikolay, Dalla Piazza Bastien, Kiefer Klaus, Klemke Bastian, Rosenbaum Thomas F., Aeppli Gabriel, Gannarelli Che, Prokes Karel, Podlesnyak Andrey, Straessle Thierry, Keller Lukas, Zaharko Oksana, Kraemer Karl W., Ronnow Henrik M. (2012), Dipolar Antiferromagnetism and Quantum Criticality in LiErF4, in SCIENCE, 336(6087), 1416-1419.
Effect of Ca substitution on crystal structure and superconducting properties of ferromagnetic superconductor RuSr2-xCaxGd1.4Ce0.6Cu2O10-delta
Fallahi S, Mazaheri M, Nikseresht N, Ronnow HM, Akhavan M (2012), Effect of Ca substitution on crystal structure and superconducting properties of ferromagnetic superconductor RuSr2-xCaxGd1.4Ce0.6Cu2O10-delta, in JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 324(6), 949-954.
Electric field control of the skyrmion lattice in Cu2OSeO3
White J. S., Levatic I., Omrani A. A., Egetenmeyer N., Prsa K., Zivkovic I., Gavilano J. L., Kohlbrecher J., Bartkowiak M., Berger H., Ronnow H. M. (2012), Electric field control of the skyrmion lattice in Cu2OSeO3, in JOURNAL OF PHYSICS-CONDENSED MATTER, 24(43), 432201.
Magnetic hourglass dispersion and its relation to high-temperature superconductivity in iron-tuned Fe1+yTe0.7Se0.3
Tsyrulin N., Viennois R., Giannini E., Boehm M., Jimenez-Ruiz M., Omrani A. A., Piazza B. Dalla, Ronnow H. M. (2012), Magnetic hourglass dispersion and its relation to high-temperature superconductivity in iron-tuned Fe1+yTe0.7Se0.3, in NEW JOURNAL OF PHYSICS, 14, 073025.
Phonon Energy Gaps in the Charged Incommensurate Planes of the Spin-Ladder Sr14Cu24O41 Compound by Raman and Infrared Spectroscopy
Thorsmolle V. K., Homes C. C., Gozar A., Blumberg G., van Mechelen J. L. M., Kuzmenko A. B., Vanishri S., Marin C., Ronnow H. M. (2012), Phonon Energy Gaps in the Charged Incommensurate Planes of the Spin-Ladder Sr14Cu24O41 Compound by Raman and Infrared Spectroscopy, in PHYSICAL REVIEW LETTERS, 108(21), 217401.
Site-selective quantum correlations revealed by magnetic anisotropy in the tetramer system SeCuO3
Zivkovic I., Djokic D. M., Herak M., Pajic D., Prsa K., Pattison P., Dominko D., Mickovic Z., Cincic D., Forro L., Berger H., Ronnow H. M. (2012), Site-selective quantum correlations revealed by magnetic anisotropy in the tetramer system SeCuO3, in PHYSICAL REVIEW B, 86(5), 054405.
Spin excitations in a single La2CuO4 layer
Dean M. P. M., Springell R. S., Monney C., Zhou K. J., Pereiro J., Bozovic I., Dalla Piazza B., Ronnow H. M., Morenzoni E., van den Brink J., Schmitt T., Hill J. P. (2012), Spin excitations in a single La2CuO4 layer, in NATURE MATERIALS, 11(10), 850-854.
Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr2CuO3
Schlappa J., Wohlfeld K., Zhou K. J., Mourigal M., Haverkort M. W., Strocov V. N., Hozoi L., Monney C., Nishimoto S., Singh S., Revcolevschi A., Caux J. -S., Patthey L., Ronnow H. M., van den Brink J., Schmitt T. (2012), Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr2CuO3, in NATURE, 485(7396), 82-82.
Unified one-band Hubbard model for magnetic and electronic spectra of the parent compounds of cuprate superconductors
Dalla Piazza B., Mourigal M., Guarise M., Berger H., Schmitt T., Zhou K. J., Grioni M., Ronnow H. M. (2012), Unified one-band Hubbard model for magnetic and electronic spectra of the parent compounds of cuprate superconductors, in PHYSICAL REVIEW B, 85(10), 100508.
mu SR investigation of magnetism and magnetoelectric coupling in Cu2OSeO3
Maisuradze A, Guguchia Z, Graneli B, Ronnow HM, Berger H, Keller H (2011), mu SR investigation of magnetism and magnetoelectric coupling in Cu2OSeO3, in PHYSICAL REVIEW B, 84(6), 064433-064433.
Pair correlations, short-range order, and dispersive excitations in the quasi-kagome quantum magnet volborthite
Nilsen GJ, Coomer FC, de Vries MA, Stewart JR, Deen PP, Harrison A, Ronnow HM (2011), Pair correlations, short-range order, and dispersive excitations in the quasi-kagome quantum magnet volborthite, in PHYSICAL REVIEW B, 84(17), 172401-172401.
Rods of Neutron Scattering Intensity in Yb2Ti2O7: Compelling Evidence for Significant Anisotropic Exchange in a Magnetic Pyrochlore Oxide
Thompson JD, McClarty PA, Ronnow HM, Regnault LP, Sorge A, Gingras MJP (2011), Rods of Neutron Scattering Intensity in Yb2Ti2O7: Compelling Evidence for Significant Anisotropic Exchange in a Magnetic Pyrochlore Oxide, in PHYSICAL REVIEW LETTERS, 106(18), 187202-187202.
Spangolite: an s=1/2 maple leaf lattice antiferromagnet?
Fennell T, Piatek JO, Stephenson RA, Nilsen GJ, Ronnow HM (2011), Spangolite: an s=1/2 maple leaf lattice antiferromagnet?, in JOURNAL OF PHYSICS-CONDENSED MATTER, 23(16), 164201-164201.
Crystal growth and characterization of the dilutable frustrated spin-ladder compound Bi(Cu1-xZnx)(2)PO6
Wang S, Pomjakushina E, Shiroka T, Deng G, Nikseresht N, Ruegg C, Ronnow HM, Conder K (2010), Crystal growth and characterization of the dilutable frustrated spin-ladder compound Bi(Cu1-xZnx)(2)PO6, in JOURNAL OF CRYSTAL GROWTH, 313(1), 51-55.
Measurement of Magnetic Excitations in the Two-Dimensional Antiferromagnetic Sr2CuO2Cl2 Insulator Using Resonant X-Ray Scattering: Evidence for Extended Interactions
Guarise M, Dalla Piazza B, Moretti Sala M, Ghiringhelli G, Braicovich L, Berger H, Hancock JN, van der Marel D, Schmitt T, Strocov VN, Ament LJP, van den Brink J, Lin PH, Xu P, Ronnow HM, Grioni M (2010), Measurement of Magnetic Excitations in the Two-Dimensional Antiferromagnetic Sr2CuO2Cl2 Insulator Using Resonant X-Ray Scattering: Evidence for Extended Interactions, in PHYSICAL REVIEW LETTERS, 105(15), 157006-157006.

Associated projects

Number Title Start Funding scheme
121397 Sub-Kelvin high sensitivity magnetometer for magnetic materials exploration 01.07.2008 R'EQUIP
141962 Mott Physics Beyond the Heisenberg Model in Iridates and Related Materials 01.01.2013 Sinergia
146870 Quantum Magnetism - Spinons, Skyrmions and Dipoles 01.04.2013 Project funding (Div. I-III)
146870 Quantum Magnetism - Spinons, Skyrmions and Dipoles 01.04.2013 Project funding (Div. I-III)
116590 From Quantum Phase transitions to Addressable Spin Clusters 01.04.2007 Project funding (Div. I-III)
121898 Dimer Physics - from new Quantum Phases to Superconductivity 01.01.2009 Project funding (Div. I-III)
133815 Setup for studies of quantum phenomena in condensed matter systems at ultra-low temperatures in magnetic vector fields 01.04.2012 R'EQUIP
144972 High efficiency neutron spectrometer optimized for investigations under extreme conditions 01.01.2014 R'EQUIP
117817 Magnetic excitations in novel metal-organic quantum materials and molecular magnets 01.01.2008 Project funding (Div. I-III)

Abstract

Quantum magnetism remains at the forefront of condensed matter physics. On one hand, it provides the ideal arena for developing and testing new fundamental concepts in solid-state and statistical physics, on the other hand it has a pivotal role in several classes of emerging materials with new electronic properties, e.g. the high-temperature superconducting cuprates and potentially solid state quantum information processing.As requested by the SNF, this proposal combines for aligned continuation two successful research programs within the Laboratory for Quantum Magnetism and its collaborators. A) Dimer Physics concern synthesis and experiments on materials hosting spin-1/2 pairs - the archetype of quantum entanglement - as building block for the occurrence of novel quantum phenomena and phases: Hard-core boson statistics, Bose-Einstein condensation, quantum phase transitions (QPTs) to new phases such as supersolids, and possible mechanisms to superconductivity. B) Dipolar Criticality is the experimental and theoretical investigation of quantum and thermal phase transitions, spin-glassiness and other phenomena in a family of insulating magnetic compounds, where dipolar forces between highly anisotropic rare-earth moments determine the effective model Hamiltonian.
-