Project

Back to overview

Mechanisms of Polycomb group protein mediated genome programming in Arabidopsis

English title Mechanisms of Polycomb group protein mediated genome programming in Arabidopsis
Applicant Hennig Lars
Number 130272
Funding scheme Project funding (Div. I-III)
Research institution Uppsala BioCenter Dept of Plant Biology and Forest Genetics Swedish University of Agricultural Science
Institution of higher education ETH Zurich - ETHZ
Main discipline Embryology, Developmental Biology
Start/End 01.05.2010 - 30.06.2012
Approved amount 271'878.00
Show all

All Disciplines (3)

Discipline
Embryology, Developmental Biology
Genetics
Molecular Biology

Keywords (8)

arabidopsis; chromatin; development; vernalization; transcription; Polycomb; histone; gene expression

Lay Summary (German)

Lead
Lay summary
Genexpressionsprofile müssen über viele Zellgenerationen korrekt weitergegeben werden. Diese Funktion wird in Vielzellern von chromatinmodifizierenden Proteinkomplexen erfüllt. Die zugrundeliegenden molekularen Mechanismen sind nur teilweise verstanden, aber während der letzten Jahre stellet sich heraus, dass Polycomb Gruppen (PcG) Proteine eine wichtige Rolle in diesem Prozess spielen. PcG Proteine sind evolutionär konservierte Proteine, die verschiedene Multiproteinkomplexe ausbilden. Der Polycomb Repressive Complex 2 (PRC2) fügt bestimmte Modifizierungen in das Chromatin von Zielgenen ein, und der PRC1 Komplex bindet an diese Modifizierungen und verhindert die Genexpression. In diesem Projekt wollen wir molekulare Mechanismen der Funktion von PcG Proteinen aufklären. Insbesondere werden wir untersuchen, wie PcG Proteine ihre Zielgene finden und wie verschiedene PcG Proteine ihre Ziele unterscheiden. Ausserdem werden wir untersuchen, welche Mechanismen PcG Proteine in Pflanzen benutzen, um Gene zu inaktivieren. In Säugern ist die präzise Regulation von Geneaktivität durch PcG Proteine entscheidend, um die Entstehung von Krebs zu verhindern. Unsere Ergebnisse werden helfen, diese wichtigen Prozesse besser zu verstehen.
Direct link to Lay Summary Last update: 21.02.2013

Responsible applicant and co-applicants

Employees

Publications

Publication
Evaluation of alternative RNA labeling protocols for transcript profiling with Arabidopsis AGRONOMICS1 tiling arrays.
Müller Marlen, Patrignani Andrea, Rehrauer Hubert, Gruissem Wilhelm, Hennig Lars (2012), Evaluation of alternative RNA labeling protocols for transcript profiling with Arabidopsis AGRONOMICS1 tiling arrays., in Plant methods, 8(1), 18-18.
A fruitful chromatin harvest: meeting summary of the Second European Workshop on Plant Chromatin 2011 in Versailles, France.
Houba-Hérin Nicole, Hennig Lars, Köhler Claudia, Gaudin Valérie (2012), A fruitful chromatin harvest: meeting summary of the Second European Workshop on Plant Chromatin 2011 in Versailles, France., in Epigenetics : official journal of the DNA Methylation Society, 7(3), 307-11.
Plant gene regulation in response to abiotic stress.
Hennig Lars (2012), Plant gene regulation in response to abiotic stress., in Biochimica et biophysica acta, 1819(2), 85-85.
Plastid Proteome Assembly without Toc159: Photosynthetic Protein Import and Accumulation of N-Acetylated Plastid Precursor Proteins
Bischof S, Baerenfaller K, Wildhaber T, Troesch R, Vidi PA, Roschitzki B, Hirsch-Hoffmann M, Hennig L, Kessler F, Gruissem W, Baginsky S (2011), Plastid Proteome Assembly without Toc159: Photosynthetic Protein Import and Accumulation of N-Acetylated Plastid Precursor Proteins, in PLANT CELL, 23(11), 3911-3928.
Ectopic gene expression and organogenesis in Arabidopsis mutants missing BRU1 required for genome maintenance.
Ohno Yusuke, Narangajavana Jarunya, Yamamoto Akiko, Hattori Tsukaho, Kagaya Yasuaki, Paszkowski Jerzy, Gruissem Wilhelm, Hennig Lars, Takeda Shin (2011), Ectopic gene expression and organogenesis in Arabidopsis mutants missing BRU1 required for genome maintenance., in Genetics, 189(1), 83-95.
RETINOBLASTOMA-RELATED PROTEIN controls the transition to autotrophic plant development.
Gutzat Ruben, Borghi Lorenzo, Fütterer Johannes, Bischof Sylvain, Laizet Yec'han, Hennig Lars, Feil Regina, Lunn John, Gruissem Wilhelm (2011), RETINOBLASTOMA-RELATED PROTEIN controls the transition to autotrophic plant development., in Development (Cambridge, England), 138(14), 2977-86.
A gain-of-function mutation of Arabidopsis cryptochrome1 promotes flowering.
Exner Vivien, Alexandre Cristina, Rosenfeldt Gesa, Alfarano Pietro, Nater Mena, Caflisch Amedeo, Gruissem Wilhelm, Batschauer Alfred, Hennig Lars (2010), A gain-of-function mutation of Arabidopsis cryptochrome1 promotes flowering., in Plant physiology, 154(4), 1633-45.
Flowering time control.
Möller-Steinbach Yvonne, Alexandre Cristina, Hennig Lars (2010), Flowering time control., in Methods in molecular biology (Clifton, N.J.), 655, 229-37.
Global transcript profiling of transgenic plants constitutively overexpressing the RNA-binding protein AtGRP7.
Streitner Corinna, Hennig Lars, Korneli Christin, Staiger Dorothee (2010), Global transcript profiling of transgenic plants constitutively overexpressing the RNA-binding protein AtGRP7., in BMC plant biology, 10, 221-221.
Growth protocols for model plants in developmental biology.
Hennig Lars (2010), Growth protocols for model plants in developmental biology., in Methods in molecular biology (Clifton, N.J.), 655, 1-10.
H3K27me3 profiling of the endosperm implies exclusion of polycomb group protein targeting by DNA methylation.
Weinhofer Isabelle, Hehenberger Elisabeth, Roszak Pawel, Hennig Lars, Köhler Claudia (2010), H3K27me3 profiling of the endosperm implies exclusion of polycomb group protein targeting by DNA methylation., in PLoS genetics, 6(10), e1001152-e1001152.
Regulation of cell identity by plant Polycomb and trithorax group proteins.
Köhler Claudia, Hennig Lars (2010), Regulation of cell identity by plant Polycomb and trithorax group proteins., in Current opinion in genetics & development, 20(5), 541-7.
Arabidopsis RETINOBLASTOMA-RELATED is required for stem cell maintenance, cell differentiation, and lateral organ production.
Borghi Lorenzo, Gutzat Ruben, Fütterer Johannes, Laizet Yec'han, Hennig Lars, Gruissem Wilhelm (2010), Arabidopsis RETINOBLASTOMA-RELATED is required for stem cell maintenance, cell differentiation, and lateral organ production., in The Plant cell, 22(6), 1792-811.

Associated projects

Number Title Start Funding scheme
116060 Control of development by Arabidopsis MSI1 - Identification of target genes and protein partners 01.05.2007 Project funding (Div. I-III)

Abstract

Established gene expression profiles need to be faithfully transmitted over many cell generations. In multicellular organisms, this function is carried out by chromatin modifying machineries that maintain established transcriptional states. Although the underlying molecular mechanisms are still only poorly understood, during recent years it became evident that Polycomb group (PcG) proteins play an essential role in this process. PcG proteins are evolutionary conserved proteins that assemble into multimeric complexes with enzymatic activity. The Polycomb Repressive Complex 2 (PRC2) establishes trimethylation marks on histone H3 lysine 27 (H3K27me3). In insects and mammals H3K27me3 is bound by the PRC1 complex that subsequently ubiquitylates histone H2A leading to transcriptional repression. Components of PRC1 are not very well conserved in plants, and the mechanisms of PcG mediated gene repression in plants are unknown. The LIKE HETEROCHROMATIN PROTEIN1 (LHP1) binds to H3K27me3-rich regions; however, it remains enigmatic how LHP1 mediates transcriptional repression. Here, I propose to uncover molecular mechanisms of gene regulation by detailed investigations of PcG protein functions in plants. Specifically, the aim of this research proposal is to elucidate by which mechanisms PcG proteins are directed to their target loci and how different PcG complexes distinguish their target genes. Furthermore, we want to reveal mechanisms of PcG-mediated transcriptional repression in plants and to functionally connect chromatin modifications with changes of the transcriptional status of a gene. Therefore, we plan to identify histone marks that are coregulated with H3K27me3. The precise regulation of PcG target gene expression is crucial to prevent cancer development in mammals as well as to maintain stem cell fate; therefore, the results of our investigations will likely be of high interest for a broad scientific and medical community.
-