Project

Back to overview

Copper/Electrolyte Interfaces under Reactive Conditions

Applicant Broekmann Peter
Number 129925
Funding scheme Project funding (Div. I-III)
Research institution Departement für Chemie und Biochemie Universität Bern
Institution of higher education University of Berne - BE
Main discipline Physical Chemistry
Start/End 01.09.2010 - 31.08.2013
Approved amount 227'224.00
Show all

All Disciplines (2)

Discipline
Physical Chemistry
Material Sciences

Keywords (10)

Electrochemistry; Metal deposition; Adsorption phenomena; Redoxchemistry; Copper technology; dual Damascene process; copper plating; electrified interfaces; scanning tunneling microscopy; X-ray scattering

Lay Summary (German)

Lead
Lay summary
LeadAbscheideprozesse an Kupfer/Elektrolyt-Grenzflächen spielen eine zentrale Rolle in der modernen Halbleitertechnologie. Additivkontrolliertes Kupferplating wird hier zur Herstellung von Leiterbahnarchitekturen verwendet. Das Projekt hat sich zum Ziel gesetzt, den Wirkungsmechanismus von Additiven für den sogenannten Damascene-Prozess auf molekularer Ebene aufzuklären. HintergrundAbscheideprozesse aus wässrigen Elektrolytlösungen, die lokal unterschiedliche Depositionsraten auf einem Substrat erfordern, werden in der Regel durch das Wechselspiel von verschiedenen organischen und anorganischen Additiven gesteuert, die im Verlauf des Abscheideprozesses entweder mit der Substratoberfläche selbst oder den Intermediaten des Abscheidevorgangs interagieren, um so lokal die lokalen Reaktionsraten zu beeinflussen. Die hierfür notwendigen Unterschiede in der lokalen Additivkonzentration werden auf der Substratoberfläche durch die Transport- Adsorptionsgeschwindigkeit der verschiedenen Additive reguliert. Prominentes Beispiel hierfür ist der sogenannte Damascene-Prozess, mit dessen Hilfe Leiterbahnarchitekturen durch einen elektrochemischen Abscheideprozess mit Kupfer gefüllt werden (Kupfertechnologie). Die kleinsten zu füllenden Leiterbahnstrukturen erreichen dabei Durchmesser von nunmehr nur noch 30 Nanometern. Ein atomistisches Verständnis der zeitabhängigen synergistischen und antagonistischen Wechselwirkungen von Additiven mit der Kupferoberfläche unter reaktiven Bedingungen fehlt bislang. Das ZielDas Projekt hat zum Ziel, die Wechselwirkung von sogenannten Beschleuniger- und Suppressoradditiven mit einkristallinen Modelloberflächen unter reaktiven Bedingungen auf einer atomaren bzw. molekularen Ebene zu verstehen. Zur strukturellen Charakterisierung der Kupfer/Elektrolyt-Grenzflächen kommen hierfür moderne Rastersondenmethoden wie der in-situ Rastertunnelmikroskopie (STM), die Einblicke in die lokale Struktur der Substratoberfläche liefert, sowie in-situ Röntgenbeugungsmethoden zum Einsatz. Beide Methoden sollen im Rahmen dieses Projektes hinsichtlich ihrer zeitlichen Auflösung optimiert werden (Hochgeschwindigkeits-STM). BedeutungErkenntnisse zum atomistischen Mechanismus der Additivwechselwirkung mit der Kupfersubstratoberfläche sollen dazu beitragen, neue, leistungsfähigere Additive zu entwickeln, die in Zukunft in der Hableiterindustrie Verwendung finden. Dieses grundlagenorientierte Projekt ergänzt existierende Kooperationen des Hauptgesuchstellers mit der BASF-AG, in denen die Additivwirkung auf realen Waferoberflächen, relevant für die zukünftigen 32- und 22nm-Technologien, charakterisiert werden.
Direct link to Lay Summary Last update: 21.02.2013

Responsible applicant and co-applicants

Employees

Publications

Publication
On the role of halides and thiols in additive-assisted copper electroplating
Huynh Thi M. T., Weiss Florian, Hai Nguyen T. M., Reckien Werner, Bredow Thomas, Fluegel Alexander, Arnold Marco, Mayer Dieter, Keller Hubert, Broekmann Peter (2013), On the role of halides and thiols in additive-assisted copper electroplating, in ELECTROCHIMICA ACTA, 89, 537-548.
On the role of halides and thiols in additive-assisted copper electroplating
Huynh Thi Mien Trung, Weiss Florian, Hai Nguyen T M, Reckien Werner, Bredow Thomas, Arnold Marco, Mayer Dieter, Keller Hubert J., Broekmann Peter (2013), On the role of halides and thiols in additive-assisted copper electroplating, in Electrochimica Acta, 89, 537-548.
Polyvinylpyrrolidones (PVPs): Switchable leveler additives for damascene applications
Hai Nguyen Thi Minh, Furrer Julien, Stricker F., Huynh Thi Mien Trung, Gjuroski I., Luedi N., Brunner T., Weiss Florian, Fluegel Alexander, Arnold Marco, Chang I., Mayer Dieter, Broekmann Peter (2013), Polyvinylpyrrolidones (PVPs): Switchable leveler additives for damascene applications, in Journal of the Electrochemical Society, 160(12), D3116-D3125.
Beyond interfacial anion/cation pairing: The role of Cu(I) coordination chemistry in additive-controlled copper plating
Hai Nguyen T. M., Kraemer Karl W., Fluegel Alexander, Arnold Marco, Mayer Dieter, Broekmann Peter (2012), Beyond interfacial anion/cation pairing: The role of Cu(I) coordination chemistry in additive-controlled copper plating, in ELECTROCHIMICA ACTA, 83, 367-375.
Competitive anion/anion interactions on copper surfaces relevant for Damascene electroplating
Hai NTM, Huynh TTM, Fluegel A, Arnold M, Mayer D, Reckien W, Bredow T, Broekmann P (2012), Competitive anion/anion interactions on copper surfaces relevant for Damascene electroplating, in ELECTROCHIMICA ACTA, 70, 286-295.
Competitive anion/anion interactions on copper surfaces relevant for Damascene electroplating
Hai N. T. M., Huynh T. T. M., Fluegel A., Arnold M., Mayer D., Reckien W., Bredow T., Broekmann P. (2012), Competitive anion/anion interactions on copper surfaces relevant for Damascene electroplating, in ELECTROCHIMICA ACTA, 70, 286-295.
Competitive Anion/Water and Cation/Water Interactions at Electrified Copper/Electrolyte Interfaces Probed by in Situ X-ray Diffraction
Keller Hubert, Saracino Martino, Nguyen Hai M. T., Broekmann Peter (2012), Competitive Anion/Water and Cation/Water Interactions at Electrified Copper/Electrolyte Interfaces Probed by in Situ X-ray Diffraction, in JOURNAL OF PHYSICAL CHEMISTRY C, 116(20), 11068-11076.
Competitive Anion/Water and Cation/Water Interactions at Electrified Copper/Electrolyte Interfaces Probed by in Situ X-ray Diffraction
Keller H, Saracino M, Nguyen HMT, Thi MTH, Broekmann P (2012), Competitive Anion/Water and Cation/Water Interactions at Electrified Copper/Electrolyte Interfaces Probed by in Situ X-ray Diffraction, in JOURNAL OF PHYSICAL CHEMISTRY C, 116(20), 11068-11076.
Potential Oscillations in Galvanostatic Cu Electrodeposition: Antagonistic and Synergistic Effects among SPS, Chloride, and Suppressor Additives
Hai NTM, Oderrnatt J, Grimaudo V, Kramer KW, Fluegel A, Arnold M, Mayer D, Broekmann P (2012), Potential Oscillations in Galvanostatic Cu Electrodeposition: Antagonistic and Synergistic Effects among SPS, Chloride, and Suppressor Additives, in JOURNAL OF PHYSICAL CHEMISTRY C, 116(12), 6913-6924.
Adsorption behavior of redox-active suppressor additives: Combined electrochemical and STM studies
Hai NTM, Huynh TMT, Fluegel A, Mayer D, Broekmann P (2011), Adsorption behavior of redox-active suppressor additives: Combined electrochemical and STM studies, in Electrochimica Acta, 56(21), 7361-7370.
Classification of suppressor additives based on synergistic and antagonistic ensemble effects
Broekmann P, Fluegel A, Emnet C, Arnold M, Roeger-Goepfert C, Wagner A, Hai NTM, Mayer D (2011), Classification of suppressor additives based on synergistic and antagonistic ensemble effects, in Electrochimica Acta, 56(13), 4724-4734.
From Structure to Function: Characterization of Cu(I) Adducts in Leveler Additives by DFT Calculations
Simona F, Hai NTM, Broekmann P, Cascella M (2011), From Structure to Function: Characterization of Cu(I) Adducts in Leveler Additives by DFT Calculations, in JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2(24), 3081-3084.

Collaboration

Group / person Country
Types of collaboration
Institut für Theoretische und Angewandte Physik, Universität Stuttgart Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Mulliken Center for Theoretical Chemistry, University of Bonn Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
BASF SE, Ludwigshafen Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Industry/business/other use-inspired collaboration

Associated projects

Number Title Start Funding scheme
149224 Copper/Electrolyte Interfaces under Reactive Conditions II 01.01.2014 Project funding (Div. I-III)
137376 Modern Electrochemistry: From Fundamentals to Applications 01.09.2011 SCOPES

Abstract

Copper electrodeposition is a key processing step in today`s chip manufacturing. The so-called Copper Dual Damascene Process allows the fast and defect-free on-chip metallization of vias and trenches in one single processing step. Interconnect feature sizes of the future 32nm and 22nm technology nodes reaches diameters below 50nm. With the shrinking feature dimensions into the lower nano-meter regime it becomes evident that the interfacial structure becomes increasingly important for the mastering of deposition processes in those spatially confined features. Essential for the working of the Damascene Process are various organic and inorganic additives. Ensembles of these additives form characteristic structural motifs at the interface that cause either an accelerating or a suppressing effect. It is the aim of this project to develop characteristic structural motifs on idealized model substrates that are capable to mimic the active additive ensembles in the real deposition process. This will allow us studying these structural motifs under well defined conditions in order to unravel the synergistic interplay of individual additives in these additive ensembles at the interface (ensemble effect: function through structure). Not only is the structure of these additive ensembles of interest but also their formation kinetics. Essentially new will be the focus on additive adsorption phenomena under reactive conditions where the additive adsorption can be superimposed on simultaneous electron-transfer reactions (when the adsorbent is redox-active) or an simultaneous ion-transfer reactions (metal deposition). These reactive conditions are supposed to have a major impact on the resulting active additive ensemble at the interface. We will apply modern structure-sensitive in-situ techniques such as scanning tunneling microscopy (STM) and X-ray diffraction (XRD) for the characterization of the additive action at the interface. The major challenge in this context is to improve the time-resolution in both experiments as a crucial pre-requisite to study these complex interfaces under reactive conditions. Fundamentally new for the electrochemical surface science will be in this context the implementation of new 2D X-ray detector technology into the in-situ diffraction experiment.
-