Project

Back to overview

Multivariate analysis of dependent count data

Applicant Held Leonhard
Number 124429
Funding scheme Project funding (Div. I-III)
Research institution Institut für Epidemiologie, Biostatistik und Prävention Universität Zürich
Institution of higher education University of Zurich - ZH
Main discipline Mathematics
Start/End 01.04.2009 - 31.07.2010
Approved amount 106'600.00
Show all

All Disciplines (3)

Discipline
Mathematics
Methods of Epidemiology and Preventive Medicine
Medical Statistics

Keywords (7)

Bayesian statistics; Infectious disease epidemiology; Markov chain Monte Carlo; Spatial epidemiology; Statistical modelling; Structured Poisson regression; large nested project Swiss National Cohort

Lay Summary (English)

Lead
Lay summary
The goal of this project is to develop novel statistical methods for the analysis of dependent multivariate count data from epidemiology. There are two main areas of research. First, new methodology for structured Poisson regression models will be developed. This framework includes important special cases such as age-period-cohort models for count data stratified by age group and calendar time or spatial and spatio-temporal models from geographical epidemiology. Modern inference techniques, in particular efficient Markov chain Monte Carlo(MCMC) algorithms based on auxiliary variables and numerical methods based on integrated nested Laplace approximations will be considered.The methodology will be applied to multivariate mortality data obtained from the Swiss National Cohort.Secondly, statistical methods for the analysis of multivariate infectious disease surveillance data will be advanced further. Random effects will be incorporated in the multivariate models developed so far. This will enable the analysis of high-dimensional multivariate time series of counts with heterogeneity in the model coefficients.The predictive properties of the models proposed will be validated based on proper scoring rules and related techniques. Finally, a regression-based approach to incorporate possible dependence of infectiveness parameters on covariates will be considered.
Direct link to Lay Summary Last update: 21.02.2013

Responsible applicant and co-applicants

Employees

Associated projects

Number Title Start Funding scheme
130002 Multivariate analysis of dependent count data 01.08.2010 Project funding (Div. I-III)
116776 Multivariate analysis of dependent count and survival data 01.04.2007 Project funding (Div. I-III)
130002 Multivariate analysis of dependent count data 01.08.2010 Project funding (Div. I-III)
137919 Statistical methods for spatio-temporal modelling and prediction of infectious diseases 01.03.2012 Project funding (Div. I-III)

Abstract

The goal of this project is to develop novel statistical methods for the analysis of dependent multivariate count data from epidemiology. It builds upon the project “Multivariate analysis of dependent count and survival data”, which is funded by SNF since April 2007. There are two main areas of research. First, new methodology for structured Poisson regressionmodels will be developed. This framework includes important special cases such as age-period-cohort models for count data stratified by age group and calendar time or spatial and spatio-temporal models from geographical epidemiology. Modern inference techniques, in particular efficient Markov chain Monte Carlo (MCMC) algorithms based on auxiliary variables and numerical methods based on integrated nested Laplace approximations will be considered. The methodology will be applied to multivariate mortality data obtained from the Swiss National Cohort. Secondly, statistical methods for the analysis of multivariate infectious disease surveillance data will be advanced further. Random effects will be incorporated in the multivariate models developed so far. This will enable the analysis of high-dimensional multivariate time series of countswith heterogeneity in the model coefficients. The predictive properties of the models proposed will be validated based on proper scoring rules and related techniques. Finally, a regression-based approach to incorporate possible dependence of infectiveness parameters on covariates will be considered.
-